[net] # Testing #batch=1 #subdivisions=1 # Training # batch=8 - 12GB CPU-RAM required (increase batch and subdivisions to increase sequense prediction) batch=64 subdivisions=8 width=416 height=416 channels=3 momentum=0.9 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1 learning_rate=0.001 burn_in=1000 max_batches = 10000 policy=sgdr sgdr_cycle=1000 sgdr_mult=2 steps=4000,6000,8000,9000 #scales=1, 1, 0.1, 0.1 [convolutional] batch_normalize=1 filters=16 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=1 [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky ########### [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky ########### to [yolo-3] [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [route] layers = -1, 8 ########### [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky ########### to [yolo-2] [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [route] layers = -1, 6 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky ########### features of different layers [route] layers=1 [reorg] stride=2 [route] layers=3,-1 [reorg] stride=2 [route] layers=5,-1 [reorg] stride=2 [route] layers=7,-1 [reorg] stride=2 [route] layers=9,-1 ########### [yolo-1] [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky [upsample] stride=4 [route] layers = -1,24 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=18 activation=linear [yolo] mask = 0,1,2 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=1 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=0 ########### [yolo-2] [route] layers = -7 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [route] layers = -1,19 [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=18 activation=linear [yolo] mask = 3,4,5 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=1 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=0 ########### [yolo-3] [route] layers = -14 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [route] layers = -1,14 [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=18 activation=linear [yolo] mask = 6,7,8 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=1 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=0