diff --git a/Manifest.toml b/Manifest.toml index 5e34b02..56a8795 100644 --- a/Manifest.toml +++ b/Manifest.toml @@ -168,7 +168,7 @@ deps = ["Libdl", "LinearAlgebra", "Random", "Serialization", "SuiteSparse_jll"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" [[deps.SpatialHashing]] -git-tree-sha1 = "d832097e5c801030045d7e8223b93bd337620cb0" +git-tree-sha1 = "633b7699c3d67433bb6139aa57fe5360fb469f0b" repo-rev = "main" repo-url = "https://github.com/Alexander-Barth/SpatialHashing.jl" uuid = "e2e8a281-5b48-4fd6-b542-65e07fde0794" @@ -188,9 +188,9 @@ version = "2.2.0" [[deps.StaticArrays]] deps = ["LinearAlgebra", "Random", "StaticArraysCore", "Statistics"] -git-tree-sha1 = "8982b3607a212b070a5e46eea83eb62b4744ae12" +git-tree-sha1 = "832afbae2a45b4ae7e831f86965469a24d1d8a83" uuid = "90137ffa-7385-5640-81b9-e52037218182" -version = "1.5.25" +version = "1.5.26" [[deps.StaticArraysCore]] git-tree-sha1 = "6b7ba252635a5eff6a0b0664a41ee140a1c9e72a" diff --git a/docs/src/index.md b/docs/src/index.md index 8c92fc6..c486430 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -14,7 +14,7 @@ The fluid is represented by a set of discrete particles. Each particle is center ``` where $\mathbf v_i$ is the velocity of the i-th particle. -Each particle can have a property $A$ +Each particle can have a property $A$: ```math A(\mathbf r) = \int A(\mathbf r') W(|\mathbf r - \mathbf r'|,h) d^n r' @@ -27,13 +27,13 @@ and it normalized: \int W(|\mathbf r - \mathbf r'|,h) d^n r' = 1 ``` -and converges to a Dirac function if $h$ tends to zero. +and converges to the Dirac function $\delta(\mathbf r - \mathbf r')$ if $h$ tends to zero. ```math \lim_{h \rightarrow 0} \int W(|\mathbf r - \mathbf r'|,h) d^n r' = \delta(\mathbf r - \mathbf r') ``` -For small $h$, we can therefore approximate the integral using the discrete sum: +For small $h$ enought and sufficiently many particles, we can therefore approximate the integral using the discrete sum: ```math A(\mathbf r) = \sum_i V_i A_i W(|\mathbf r - \mathbf r_i|,h) @@ -65,7 +65,7 @@ which can be seen as a discretized form of: \frac{d\rho}{dt} = -\rho \nabla \cdot v ``` -The pressure gradient is computed using the symmetric form: +The pressure gradient is computed using the symmetric form by analogy of the evolution equation of density: ```math \nabla p(r_i) = \rho_i \sum_j m_j