-
Notifications
You must be signed in to change notification settings - Fork 1
/
defs.h
437 lines (387 loc) · 13.7 KB
/
defs.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/*
This file contains definitions used by the Hex-Rays decompiler output.
It has type definitions and convenience macros to make the
output more readable.
Copyright (c) 2007-2018 Hex-Rays
*/
#ifndef HEXRAYS_DEFS_H
#define HEXRAYS_DEFS_H
#if defined(__GNUC__)
typedef long long ll;
typedef unsigned long long ull;
#define __int64 long long
#define __int32 int
#define __int16 short
#define __int8 char
#define MAKELL(num) num ## LL
#define FMT_64 "ll"
#elif defined(_MSC_VER)
typedef __int64 ll;
typedef unsigned __int64 ull;
#define MAKELL(num) num ## i64
#define FMT_64 "I64"
#elif defined (__BORLANDC__)
typedef __int64 ll;
typedef unsigned __int64 ull;
#define MAKELL(num) num ## i64
#define FMT_64 "L"
#else
#error "unknown compiler"
#endif
typedef unsigned int uint;
typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned long ulong;
typedef char int8;
typedef signed char sint8;
typedef unsigned char uint8;
typedef short int16;
typedef signed short sint16;
typedef unsigned short uint16;
typedef int int32;
typedef signed int sint32;
typedef unsigned int uint32;
typedef ll int64;
typedef ll sint64;
typedef ull uint64;
// Partially defined types. They are used when the decompiler does not know
// anything about the type except its size.
#define _BYTE uint8
#define _WORD uint16
#define _DWORD uint32
#define _QWORD uint64
#if !defined(_MSC_VER)
#define _LONGLONG __int128
#endif
// Non-standard boolean types. They are used when the decompiler can not use
// the standard "bool" type because of the size mistmatch but the possible
// values are only 0 and 1. See also 'BOOL' type below.
typedef int8 _BOOL1;
typedef int16 _BOOL2;
typedef int32 _BOOL4;
typedef int64 _BOOL8;
#ifndef _WINDOWS_
typedef int8 BYTE;
typedef int16 WORD;
typedef int32 DWORD;
typedef int32 LONG;
typedef int BOOL; // uppercase BOOL is usually 4 bytes
#endif
//typedef unsigned __int64 QWORD;
#ifndef __cplusplus
typedef int bool; // we want to use bool in our C programs
#endif
#define __pure // pure function: always returns the same value, has no
// side effects
// Non-returning function
#if defined(__GNUC__)
#define __noreturn __attribute__((noreturn))
#else
#define __noreturn __declspec(noreturn)
#endif
#ifndef NULL
#define NULL 0
#endif
// Some convenience macros to make partial accesses nicer
#define LAST_IND(x,part_type) (sizeof(x)/sizeof(part_type) - 1)
#if defined(__BYTE_ORDER) && __BYTE_ORDER == __BIG_ENDIAN
# define LOW_IND(x,part_type) LAST_IND(x,part_type)
# define HIGH_IND(x,part_type) 0
#else
# define HIGH_IND(x,part_type) LAST_IND(x,part_type)
# define LOW_IND(x,part_type) 0
#endif
// first unsigned macros:
#define BYTEn(x, n) (*((_BYTE*)&(x)+n))
#define WORDn(x, n) (*((_WORD*)&(x)+n))
#define DWORDn(x, n) (*((_DWORD*)&(x)+n))
#define LOBYTE(x) BYTEn(x,LOW_IND(x,_BYTE))
#define LOWORD(x) WORDn(x,LOW_IND(x,_WORD))
#define LODWORD(x) DWORDn(x,LOW_IND(x,_DWORD))
#define HIBYTE(x) BYTEn(x,HIGH_IND(x,_BYTE))
#define HIWORD(x) WORDn(x,HIGH_IND(x,_WORD))
#define HIDWORD(x) DWORDn(x,HIGH_IND(x,_DWORD))
#define BYTE1(x) BYTEn(x, 1) // byte 1 (counting from 0)
#define BYTE2(x) BYTEn(x, 2)
#define BYTE3(x) BYTEn(x, 3)
#define BYTE4(x) BYTEn(x, 4)
#define BYTE5(x) BYTEn(x, 5)
#define BYTE6(x) BYTEn(x, 6)
#define BYTE7(x) BYTEn(x, 7)
#define BYTE8(x) BYTEn(x, 8)
#define BYTE9(x) BYTEn(x, 9)
#define BYTE10(x) BYTEn(x, 10)
#define BYTE11(x) BYTEn(x, 11)
#define BYTE12(x) BYTEn(x, 12)
#define BYTE13(x) BYTEn(x, 13)
#define BYTE14(x) BYTEn(x, 14)
#define BYTE15(x) BYTEn(x, 15)
#define WORD1(x) WORDn(x, 1)
#define WORD2(x) WORDn(x, 2) // third word of the object, unsigned
#define WORD3(x) WORDn(x, 3)
#define WORD4(x) WORDn(x, 4)
#define WORD5(x) WORDn(x, 5)
#define WORD6(x) WORDn(x, 6)
#define WORD7(x) WORDn(x, 7)
// now signed macros (the same but with sign extension)
#define SBYTEn(x, n) (*((int8*)&(x)+n))
#define SWORDn(x, n) (*((int16*)&(x)+n))
#define SDWORDn(x, n) (*((int32*)&(x)+n))
#define SLOBYTE(x) SBYTEn(x,LOW_IND(x,int8))
#define SLOWORD(x) SWORDn(x,LOW_IND(x,int16))
#define SLODWORD(x) SDWORDn(x,LOW_IND(x,int32))
#define SHIBYTE(x) SBYTEn(x,HIGH_IND(x,int8))
#define SHIWORD(x) SWORDn(x,HIGH_IND(x,int16))
#define SHIDWORD(x) SDWORDn(x,HIGH_IND(x,int32))
#define SBYTE1(x) SBYTEn(x, 1)
#define SBYTE2(x) SBYTEn(x, 2)
#define SBYTE3(x) SBYTEn(x, 3)
#define SBYTE4(x) SBYTEn(x, 4)
#define SBYTE5(x) SBYTEn(x, 5)
#define SBYTE6(x) SBYTEn(x, 6)
#define SBYTE7(x) SBYTEn(x, 7)
#define SBYTE8(x) SBYTEn(x, 8)
#define SBYTE9(x) SBYTEn(x, 9)
#define SBYTE10(x) SBYTEn(x, 10)
#define SBYTE11(x) SBYTEn(x, 11)
#define SBYTE12(x) SBYTEn(x, 12)
#define SBYTE13(x) SBYTEn(x, 13)
#define SBYTE14(x) SBYTEn(x, 14)
#define SBYTE15(x) SBYTEn(x, 15)
#define SWORD1(x) SWORDn(x, 1)
#define SWORD2(x) SWORDn(x, 2)
#define SWORD3(x) SWORDn(x, 3)
#define SWORD4(x) SWORDn(x, 4)
#define SWORD5(x) SWORDn(x, 5)
#define SWORD6(x) SWORDn(x, 6)
#define SWORD7(x) SWORDn(x, 7)
// Generate a pair of operands. S stands for 'signed'
#define __SPAIR16__(high, low) (((int16) (high) << 8) | (uint8) (low))
#define __SPAIR32__(high, low) (((int32) (high) << 16) | (uint16)(low))
#define __SPAIR64__(high, low) (((int64) (high) << 32) | (uint32)(low))
#define __SPAIR128__(high, low) (((int128) (high) << 64) | (uint64)(low))
#define __PAIR16__(high, low) (((uint16) (high) << 8) | (uint8) (low))
#define __PAIR32__(high, low) (((uint32) (high) << 16) | (uint16)(low))
#define __PAIR64__(high, low) (((uint64) (high) << 32) | (uint32)(low))
#define __PAIR128__(high, low) (((uint128)(high) << 64) | (uint64)(low))
// Helper functions to represent some assembly instructions.
#ifdef __cplusplus
// compile time assertion
#define __CASSERT_N0__(l) COMPILE_TIME_ASSERT_ ## l
#define __CASSERT_N1__(l) __CASSERT_N0__(l)
#define CASSERT(cnd) typedef char __CASSERT_N1__(__LINE__) [(cnd) ? 1 : -1]
// check that unsigned multiplication does not overflow
template<class T> bool is_mul_ok(T count, T elsize)
{
CASSERT((T)(-1) > 0); // make sure T is unsigned
if ( elsize == 0 || count == 0 )
return true;
return count <= ((T)(-1)) / elsize;
}
// multiplication that saturates (yields the biggest value) instead of overflowing
// such a construct is useful in "operator new[]"
template<class T> bool saturated_mul(T count, T elsize)
{
return is_mul_ok(count, elsize) ? count * elsize : T(-1);
}
#include <stddef.h> // for size_t
// memcpy() with determined behavoir: it always copies
// from the start to the end of the buffer
// note: it copies byte by byte, so it is not equivalent to, for example, rep movsd
inline void *qmemcpy(void *dst, const void *src, size_t cnt)
{
char *out = (char *)dst;
const char *in = (const char *)src;
while ( cnt > 0 )
{
*out++ = *in++;
--cnt;
}
return dst;
}
// rotate left
template<class T> T __ROL__(T value, int count)
{
const uint nbits = sizeof(T) * 8;
if ( count > 0 )
{
count %= nbits;
T high = value >> (nbits - count);
if ( T(-1) < 0 ) // signed value
high &= ~((T(-1) << count));
value <<= count;
value |= high;
}
else
{
count = -count % nbits;
T low = value << (nbits - count);
value >>= count;
value |= low;
}
return value;
}
inline uint8 __ROL1__(uint8 value, int count) { return __ROL__((uint8)value, count); }
inline uint16 __ROL2__(uint16 value, int count) { return __ROL__((uint16)value, count); }
inline uint32 __ROL4__(uint32 value, int count) { return __ROL__((uint32)value, count); }
inline uint64 __ROL8__(uint64 value, int count) { return __ROL__((uint64)value, count); }
inline uint8 __ROR1__(uint8 value, int count) { return __ROL__((uint8)value, -count); }
inline uint16 __ROR2__(uint16 value, int count) { return __ROL__((uint16)value, -count); }
inline uint32 __ROR4__(uint32 value, int count) { return __ROL__((uint32)value, -count); }
inline uint64 __ROR8__(uint64 value, int count) { return __ROL__((uint64)value, -count); }
// carry flag of left shift
template<class T> int8 __MKCSHL__(T value, uint count)
{
const uint nbits = sizeof(T) * 8;
count %= nbits;
return (value >> (nbits-count)) & 1;
}
// carry flag of right shift
template<class T> int8 __MKCSHR__(T value, uint count)
{
return (value >> (count-1)) & 1;
}
// sign flag
template<class T> int8 __SETS__(T x)
{
if ( sizeof(T) == 1 )
return int8(x) < 0;
if ( sizeof(T) == 2 )
return int16(x) < 0;
if ( sizeof(T) == 4 )
return int32(x) < 0;
return int64(x) < 0;
}
// overflow flag of subtraction (x-y)
template<class T, class U> int8 __OFSUB__(T x, U y)
{
if ( sizeof(T) < sizeof(U) )
{
U x2 = x;
int8 sx = __SETS__(x2);
return (sx ^ __SETS__(y)) & (sx ^ __SETS__(U(x2-y)));
}
else
{
T y2 = y;
int8 sx = __SETS__(x);
return (sx ^ __SETS__(y2)) & (sx ^ __SETS__(T(x-y2)));
}
}
// overflow flag of addition (x+y)
template<class T, class U> int8 __OFADD__(T x, U y)
{
if ( sizeof(T) < sizeof(U) )
{
U x2 = x;
int8 sx = __SETS__(x2);
return ((1 ^ sx) ^ __SETS__(y)) & (sx ^ __SETS__(U(x2+y)));
}
else
{
T y2 = y;
int8 sx = __SETS__(x);
return ((1 ^ sx) ^ __SETS__(y2)) & (sx ^ __SETS__(T(x+y2)));
}
}
// https://en.wikipedia.org/wiki/Carry_flag#Carry_flag_vs._borrow_flag
#if defined(__ARM__) || defined(__PPC__)
#define SUB_WITH_CARRY 1
#else
#define SUB_WITH_CARRY 0
#endif
// carry flag of subtraction (x-y)
template<class T, class U> int8 __CFSUB__(T x, U y)
{
int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
bool res;
if ( size == 1 )
res = uint8(x) < uint8(y);
else if ( size == 2 )
res = uint16(x) < uint16(y);
else if ( size == 4 )
res = uint32(x) < uint32(y);
else
res = uint64(x) < uint64(y);
#if SUB_WITH_CARRY
res = !res;
#endif
return res;
}
// carry flag of addition (x+y)
template<class T, class U> int8 __CFADD__(T x, U y)
{
int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
if ( size == 1 )
return uint8(x) > uint8(x+y);
if ( size == 2 )
return uint16(x) > uint16(x+y);
if ( size == 4 )
return uint32(x) > uint32(x+y);
return uint64(x) > uint64(x+y);
}
// carry flag of subtraction with carry
template<class T, class U> int8 __CFSUB__(T x, U y, int8 cf)
{
#if SUB_WITH_CARRY
cf = !cf;
#endif
return __CFADD__(y, cf) ^ __CFSUB(x, y + cf);
}
// overflow flag of subtraction with carry
template<class T, class U> int8 __OFSUB__(T x, U y, int8 cf)
{
#if SUB_WITH_CARRY
cf = !cf;
#endif
return __OFADD__(y, cf) ^ __OFSUB(x, y + cf);
}
inline int8 abs8(int8 x) { return x >= 0 ? x : -x; }
inline int16 abs16(int16 x) { return x >= 0 ? x : -x; }
inline int32 abs32(int32 x) { return x >= 0 ? x : -x; }
inline int64 abs64(int64 x) { return x >= 0 ? x : -x; }
//inline int128 abs128(int128 x) { return x >= 0 ? x : -x; }
#else // C++
// For C, we just provide macros, they are not quite correct.
#define __ROL__(x, y) __rotl__(x, y) // Rotate left
#define __ROR__(x, y) __rotr__(x, y) // Rotate right
#define __CFSHL__(x, y) invalid_operation // Generate carry flag for (x<<y)
#define __CFSHR__(x, y) invalid_operation // Generate carry flag for (x>>y)
#define __CFADD__(x, y) invalid_operation // Generate carry flag for (x+y)
#define __CFSUB__(x, y) invalid_operation // Generate carry flag for (x-y)
#define __OFADD__(x, y) invalid_operation // Generate overflow flag for (x+y)
#define __OFSUB__(x, y) invalid_operation // Generate overflow flag for (x-y)
#define abs8(x) (int8) ((int8) (x) >= 0 ? (x) : -(x))
#define abs16(x) (int16) ((int16) (x) >= 0 ? (x) : -(x))
#define abs32(x) (int32) ((int32) (x) >= 0 ? (x) : -(x))
#define abs64(x) (int64) ((int64) (x) >= 0 ? (x) : -(x))
#define abs128(x) (int128)((int128)(x) >= 0 ? (x) : -(x))
#endif // C++
// No definition for rcl/rcr because the carry flag is unknown
#define __RCL__(x, y) invalid_operation // Rotate left thru carry
#define __RCR__(x, y) invalid_operation // Rotate right thru carry
#define __MKCRCL__(x, y) invalid_operation // Generate carry flag for a RCL
#define __MKCRCR__(x, y) invalid_operation // Generate carry flag for a RCR
#define __SETP__(x, y) invalid_operation // Generate parity flag for (x-y)
// In the decompilation listing there are some objects declared as _UNKNOWN
// because we could not determine their types. Since the C compiler does not
// accept void item declarations, we replace them by anything of our choice,
// for example a char:
#define _UNKNOWN char
#ifdef _MSC_VER
#define snprintf _snprintf
#define vsnprintf _vsnprintf
#endif
// The ADJ() macro is used for shifted pointers.
// While compilers do not understand it, it makes the code more readable.
// A shifted pointer is declared like this, for example:
// char *__shifted(mystruct,8) p;
// It means: while 'p' points to 'char', it also points to the middle of 'mystruct'.
// More precisely, it is at the offset of 8 bytes from the beginning of 'mystruct'.
//
// The ADJ() macro performs the necessary adjustment.
// The __parentof() and __deltaof() functions are made up, they do not exist.
// __parentof() returns the parent structure type.
// __deltaof() returns the shift amount.
#define ADJ(p) (__parentof(p) *)(p-__deltaof(p))
#endif // HEXRAYS_DEFS_H