-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_generator.py
executable file
·515 lines (403 loc) · 19.6 KB
/
data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 17 11:24:14 2020
@author: asabater
"""
import os
import numpy as np
import sys
import pickle
from tensorflow.keras.utils import to_categorical
flip_correspondences_left = [4,5,6,7, 12,13,14,15, 21,22]
flip_correspondences_right = [8,9,10,11, 16,17,18,19, 23,24]
spine = [0, 1, 2, 3, 20]
connecting_joint = [1, 0, 20, 2, 20, 4, 5, 6, 20, 8, 9, 10, 0, 12, 13, 14, 0, 16, 17, 18, 1, 7, 7, 11, 11]
# %%
import scipy.ndimage.interpolation as inter
from scipy.signal import medfilt
from scipy.spatial.distance import cdist
from tqdm import tqdm
from scipy.special import comb
from tensorflow.keras.preprocessing.sequence import pad_sequences
# Calculate JCD feature
def norm_scale(x):
return (x-np.mean(x))/np.mean(x)
# Crop movement to max_seq_len frames
def zoom_to_max_len(p, max_seq_len, joints_num, joints_dim, force=False):
# Resize movement
num_frames = p.shape[0]
if force or num_frames > max_seq_len:
# Zoom -> crop movement
p_new = np.zeros([max_seq_len, joints_num, joints_dim], dtype="float32")
for m in range(joints_num):
for n in range(joints_dim):
# smooth coordinates
# Zoom coordinates to fit the max_seq_len_shape
p_new[:,m,n] = inter.zoom(p[:,m,n], max_seq_len/num_frames)[:max_seq_len] # , mode='nearest'
else:
p_new = p
return p_new
def get_jcd_features(p, joints_num, max_seq_len):
# Get joint distances
jcd = []
iu = np.triu_indices(joints_num, 1, joints_num)
for f in range(max_seq_len):
d_m = cdist(p[f],p[f],'euclidean')
d_m = d_m[iu]
jcd.append(d_m)
jcd = np.stack(jcd)
return jcd
def get_bone_spherical_angles(v):
elevation = np.arctan2(v[:,2], np.sqrt(v[:,0]**2 + v[:,1]**2))
azimuth = np.arctan2(v[:,1], v[:,0])
return np.column_stack([elevation, azimuth])
def get_body_spherical_angles(body):
angles = np.column_stack([ get_bone_spherical_angles(body[:, i+1] - body[:, i]) for i in range(len(connecting_joint)-1) ])
return angles
def unit_vector(vector):
""" Returns the unit vector of the vector. """
return vector / np.linalg.norm(vector)
def matrix_unit_vector(matrix):
div = np.linalg.norm(matrix, axis=1)[:, None]
return np.divide(matrix, div, out=np.zeros_like(matrix), where=div!=0)
def get_transformation_matrix_global(skel):
o = (skel[:, 16, :] + skel[:, 12, :]) / 2
x = matrix_unit_vector(skel[:, 12] - o)
z = matrix_unit_vector(skel[:, 20] - o)
y = np.cross(x,z)
x[(x == 0).any(axis=1)] = [1, 0, 0]
y[(y == 0).any(axis=1)] = [0, 1, 0]
z[(z == 0).any(axis=1)] = [0, 0, 1]
r = [ np.linalg.inv(np.column_stack([ [*x[i], 0], [*y[i], 0], [*z[i], 0], [*o[i], 1] ])) for i in range(len(skel)) ]
return np.stack(r)
def transform_skel_global(skel, r):
skel = np.concatenate([skel, np.ones((skel.shape[0], 25, 1))], axis=-1)
skel = np.matmul(skel, r.transpose([0,2,1]))
skel = skel[..., :3]
return skel
# Exanche coordinates between simetric joints and flip the X axis
# Flip X axis to the not simetric joints
# The body remains looking at the same side but with fliped movements respect to X axis
def flip_skeleton(skel, flip_axis=0):
# skel[..., 0] = -skel[..., 0]
aux = skel[..., flip_correspondences_left, :]
skel[..., flip_correspondences_left, :] = skel[..., flip_correspondences_right, :]
skel[..., flip_correspondences_right, :] = aux
skel[..., flip_correspondences_left, flip_axis] = -skel[..., flip_correspondences_left, flip_axis]
skel[..., flip_correspondences_right, flip_axis] = -skel[..., flip_correspondences_right, flip_axis]
skel[..., spine, flip_axis] = -skel[..., spine, flip_axis]
return skel
def scale_skel_by_torso(skel):
torso_dists = np.linalg.norm(skel[:,20] - skel[:,1], axis=1) +\
np.linalg.norm(skel[:,1] - skel[:,0], axis=1)
for i in range(skel.shape[0]):
rel = 0.4 / torso_dists[i] if torso_dists[i] != 0 else 1
skel[i] = skel[i] * rel
return skel
def average_wrong_frame_skels(skels):
good_frames = np.all(~np.all(skels==0, axis=2), axis=1)
for num_frame, gf in enumerate(good_frames):
if gf: continue
if num_frame == 0: skels[num_frame] = skels[num_frame+1]
elif num_frame == len(skels)-1: skels[num_frame] = skels[num_frame-1]
else: skels[num_frame] = (skels[num_frame+1] + skels[num_frame-1])/2
return skels
# skip_frames -> list with the number of frames-1 to skip, to be choosen randomly
def get_pose_data_v2(body, max_seq_len, joints_num, joints_dim, center_skels,
h_flip, scale_by_torso, temporal_scale, scaler,
validation,
use_jcd_features, use_speeds,
use_coords_raw, use_coords, use_jcd_diff,
use_bone_angles,
use_bone_angles_cent,
skip_frames = [],
**kwargs):
# Remove frames without predictions
body = body[np.all(~np.all(body==0, axis=2), axis=1)]
# body = body[body.sum(axis=1).sum(axis=1)!=0]
# Crop or extend the movement by interpolation
# If extension is longer than max_seq_len, crop to max_seq_len
if not validation and temporal_scale is not False:
orig_new_frames = len(body)
temporal_scale = list(temporal_scale)
temporal_scale[0] = int(temporal_scale[0]*orig_new_frames)
temporal_scale[1] = int(temporal_scale[1]*orig_new_frames)
new_num_frames = np.random.randint(*temporal_scale)
new_num_frames = max(new_num_frames, 2)
zoom_factor = new_num_frames/orig_new_frames
body = inter.zoom(body, (zoom_factor,1,1), mode='nearest')
# Reduce frame rate
if len(skip_frames) > 0:
# print('aaaa', len(body))
sk = np.random.choice(skip_frames)
if validation: sk_init = 0
else: sk_init = np.random.randint(sk)
body = body[sk_init::sk]
# print('bbbb', len(body))
if max_seq_len > 0:
# If movement is longer than max_seq_lenght -> crop to max_seq_length
body = zoom_to_max_len(body, max_seq_len, joints_num, joints_dim)
elif max_seq_len < 0:
if not validation:
# Crop randomly the movement to -max_seq_length
start = np.random.randint(max(len(body)-abs(max_seq_len)+1, 1))
end = start + abs(max_seq_len)
body = body[start:end]
else:
# Crop to the last part of the movement
start = max(0, (len(body) - abs(max_seq_len)) // 2)
end = start + abs(max_seq_len)
body = body[start:end]
if scale_by_torso:
body = scale_skel_by_torso(body)
num_frames = len(body)
# jcd_features, speed_features = [], []
if not validation and h_flip and np.random.rand() > 0.5:
body = flip_skeleton(body)
body_before_center = body.copy()
if center_skels:
# Get transformation matrix
r = get_transformation_matrix_global(body)
skels = transform_skel_global(body, r)
if use_speeds: skels_next = transform_skel_global(body[1:], r[:-1])
else:
skels = body
if use_speeds: skels_next = body[1::]
pose_features = []
if use_bone_angles: # 24*4
# Elevation and azimuth for each bone (vector of consecutive joints)
pose_features.append(get_body_spherical_angles(body))
if use_bone_angles_cent: # 24*4
# Elevation and azimuth for each bone (vector of consecutive joints)
pose_features.append(get_body_spherical_angles(skels))
if use_coords_raw: # 75 = 25*3
# Raw coordinates
pose_features.append(np.reshape(body_before_center, (num_frames,joints_num * joints_dim)))
if use_coords: # 75 = 25*3
# Raw coordinates
pose_features.append(np.reshape(skels, (num_frames,joints_num * joints_dim)))
if use_jcd_diff or use_jcd_features:
jcd_features = get_jcd_features(skels, joints_num, num_frames)
if use_jcd_diff: # 300 = comb(25,2)
# Distance difference between frames per each pair of joints
jcd_diff = jcd_features[1:] - jcd_features[:-1]
jcd_diff = np.reshape(jcd_diff, (num_frames-1, jcd_features.shape[-1]))
jcd_diff = np.concatenate([np.expand_dims(jcd_diff[0], axis=0), jcd_diff], axis=0)
# print('Adding: use_jcd_diff')
pose_features.append(jcd_diff)
if use_jcd_features: # 300 = comb(25,2)
# Per-frame Joint distances
pose_features.append(jcd_features)
if use_speeds: # 75 = 25*3
# Frame-to-frame speeds
speed_features = skels_next - skels[:-1]
speed_features = np.reshape(speed_features, (num_frames-1, joints_num*joints_dim))
speed_features = np.concatenate([np.expand_dims(speed_features[0], axis=0), speed_features], axis=0)
pose_features.append(speed_features)
# pose_features = np.concatenate([jcd_features, speed_features], axis=1)
pose_features = np.concatenate(pose_features, axis=1).astype('float32')
if scaler is not None:
pose_features = scaler.transform(pose_features)
return pose_features
def get_scaler_filename(joints_num, joints_dim,
center_skels, scale_by_torso,
use_jcd_features, use_speeds,
use_coords_raw, use_coords, use_jcd_diff,
use_bone_angles,
use_bone_angles_cent,
num_feats,
**kwargs):
return '/home/asabater/datasets/NTU-120/data_scalers/' +\
'std_msl{}_jn{}_jd{}_cskl{}_strs{}'.format(
-1, joints_num, joints_dim,
'T' if center_skels else 'F',
'T' if scale_by_torso else 'F') +\
'_jcd{}_spds{}_coordsraw{}_coords{}_jcddiff{}_angs{}_angscent{}_numfeats{}.pckl'.format(
'T' if use_jcd_features else 'F',
'T' if use_speeds else 'F',
'T' if use_coords_raw else 'F',
'T' if use_coords else 'F',
'T' if use_jcd_diff else 'F',
'T' if use_bone_angles else 'F',
'T' if use_bone_angles_cent else 'F',
num_feats
)
def load_scaler(joints_num, joints_dim,
center_skels, scale_by_torso,
use_jcd_features, use_speeds,
use_coords_raw, use_coords, use_jcd_diff,
use_bone_angles,
use_bone_angles_cent,
num_feats,
**kwargs):
filename = get_scaler_filename(joints_num, joints_dim,
center_skels, scale_by_torso,
use_jcd_features, use_speeds,
use_coords_raw, use_coords, use_jcd_diff,
use_bone_angles,
use_bone_angles_cent,
num_feats)
scaler = pickle.load(open(filename, 'rb'))
return scaler
def get_num_feats(joints_num, joints_dim,
use_jcd_features, use_speeds, use_coords_raw, use_coords, use_jcd_diff,
use_bone_angles, use_bone_angles_cent, **kwargs):
num_feats = 0
if use_bone_angles:
num_feats += (len(connecting_joint)-1)*2
if use_bone_angles_cent:
num_feats += (len(connecting_joint)-1)*2
if use_jcd_features:
num_feats += int(comb(joints_num,2))
if use_speeds:
num_feats += joints_num * joints_dim
if use_coords_raw:
num_feats += joints_num * joints_dim
if use_coords:
num_feats += joints_num * joints_dim
if use_jcd_diff:
num_feats += int(comb(joints_num,2))
return num_feats
def get_body_skel(pose_raw, validation, mode='var'):
n_bodys = list(set(pose_raw['nbodys']))
if len(n_bodys) == 0:
p = pose_raw['skel_body0']
else:
body_lens = np.array([ len(pose[np.all(~np.all(pose==0, axis=2), axis=1)]) for pose in \
[ pose_raw['skel_body{}'.format(i)] for i in range(max(n_bodys)) ] ])
body_lens = np.where(body_lens == max(body_lens))[0]
if validation:
if mode == 'normal':
p = pose_raw['skel_body{}'.format(body_lens[0])]
elif mode == 'var':
stds = [ pose_raw['skel_body{}'.format(i)].std() for i in range(len(np.where(body_lens == max(body_lens))[0])) ]
p = pose_raw['skel_body{}'.format(body_lens[stds.index(max(stds))])]
# print(stds)
else: raise ValueError('')
else:
p_ind = np.random.choice(body_lens)
p = pose_raw['skel_body{}'.format(p_ind)]
return p
# Triplet data generator
# Each batch is composed by K=4 samples of P=B/K different classes
# if max_seq_len == 0 -> samples inside a batch are zero-padded to fit their inner max length.
# Longer sequences are zoomed out to fit max_seq_len
# if max_seq_len > 0 -> samples inside a batch are zoomed-out to fit max_seq_len
# if max_seq_len < 0 -> samples bigger than max_seq_len are randomly cropped to fit -max_seq_len
def triplet_data_generator(pose_annotations_file,
batch_size,
max_seq_len, joints_num, joints_dim, num_jcd_feats,
scale_data, in_memory_generator,
decoder, reverse_decoder,
center_skels, h_flip, scale_by_torso,
temporal_scale, validation,
triplet,
classification, num_classes,
use_jcd_features, use_speeds,
use_coords_raw, use_coords, use_jcd_diff,
use_bone_angles,
use_bone_angles_cent,
num_feats,
skip_frames = [],
average_wrong_skels = True,
is_tcn=False,
K=4,
**kwargs):
# Reads the annotations and stores them into a dict. Annotations are shuffled
def read_annotations():
pose_files = {}
with open(pose_annotations_file, 'r') as f:
for line in f:
filename, label = line.split()
label = int(label)
if label in pose_files: pose_files[label].append(filename)
else: pose_files[label] = [filename]
for k in pose_files.keys(): np.random.shuffle(pose_files[k])
return pose_files
# Return a random sample with the given label or a random one if there is no
# more samples with that label
def get_random_sample(label):
if label in pose_files and len(pose_files[label]) > 0:
return pose_files[label].pop(), label
else:
if label in pose_files: del pose_files[label]
new_label = np.random.choice(list(pose_files.keys()))
return get_random_sample(new_label)
if in_memory_generator:
print(' ** Data Generator | data will be cached | Validation: {} **'.format(validation))
cached_data = {}
if scale_data:
print(' ** Loading data scaler | Validation: {} **'.format(validation))
scaler = load_scaler(joints_num, joints_dim,
center_skels, scale_by_torso,
use_jcd_features, use_speeds,
use_coords_raw, use_coords, use_jcd_diff,
use_bone_angles,
use_bone_angles_cent,
num_feats)
else:
scaler = None
print(' *** is_tcn', is_tcn)
if not triplet: K = 1
assert batch_size % K == 0
P = batch_size // K
pose_files = read_annotations()
print('*************', K, P, batch_size)
if classification:
total_labels = sorted(list(pose_files.keys()))
labels_dict = { l:i for i,l in enumerate(total_labels) }
while True:
if sum([ len(v) for v in pose_files.values() ]) < batch_size:
# print('Update annotations')
pose_files = read_annotations()
batch_labels = []
batch_samples = []
if classification: y_clf = []
for _ in range(P):
label_iter = np.random.choice(list(pose_files.keys()))
for i in range(K):
filename, label = get_random_sample(label_iter)
if classification:
label_cat = to_categorical(labels_dict[int(label)], num_classes=num_classes)
if in_memory_generator and filename in cached_data.keys():
# print('Recovering data', filename)
sample = cached_data[filename]
else:
# print('******', filename, '********')
pose_raw = np.load(filename, allow_pickle=True).item()
p = get_body_skel(pose_raw, validation)
if average_wrong_skels: average_wrong_frame_skels(p)
sample = get_pose_data_v2(p, max_seq_len, joints_num, joints_dim,
center_skels, h_flip, scale_by_torso,
temporal_scale, scaler, validation,
use_jcd_features, use_speeds,
use_coords_raw, use_coords, use_jcd_diff,
use_bone_angles, use_bone_angles_cent,
skip_frames = skip_frames,
)
# print(validation, in_memory_generator)
if in_memory_generator:
# print('Storing:', filename)
cached_data[filename] = sample
batch_samples.append(sample); batch_labels.append(label)
if classification: y_clf.append(label_cat)
if triplet: batch_labels = np.stack(batch_labels) # for triplets
if classification: y_clf = np.stack(y_clf).astype('int') # for classification
X, Y, sample_weights = [], [], {}
X = pad_sequences(batch_samples, padding='pre', dtype='float32')
if triplet:
Y.append(batch_labels)
if classification:
# Y.append(y_clf)
Y = y_clf
if decoder:
decoder_data = [ bs[::-1] for bs in batch_samples ] if reverse_decoder else batch_samples
padding = 'pre' if is_tcn else 'post'
# decoder_data = pad_sequences(decoder_data, padding='post', dtype='float32')
decoder_data = pad_sequences(decoder_data, padding=padding, dtype='float32')
Y.append(decoder_data)
sample_weights['output_{}'.format(len(Y))] = (decoder_data[:, :, 0] != 0).astype('float32')
# print(Y)
# print(X.shape, len(Y))
yield X, Y, sample_weights