forked from ljanyst/image-segmentation-fcn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
66 lines (60 loc) · 2.55 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#-------------------------------------------------------------------------------
# Author: Lukasz Janyst <lukasz@jany.st>
# Date: 14.06.2017
#-------------------------------------------------------------------------------
import cv2
import tensorflow as tf
import numpy as np
#-------------------------------------------------------------------------------
def draw_labels(img, labels, label_colors, convert=True):
"""
Draw the labels on top of the input image
:param img: the image being classified
:param labels: the output of the neural network
:param label_colors: the label color map defined in the source
:param convert: should the output be converted to RGB
"""
labels_colored = np.zeros_like(img)
for label in label_colors:
label_mask = labels == label
labels_colored[label_mask] = label_colors[label]
img = cv2.addWeighted(img, 1, labels_colored, 0.8, 0)
if not convert:
return img
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#-------------------------------------------------------------------------------
def draw_labels_batch(imgs, labels, label_colors, convert=True):
"""
Perform `draw_labels` on all the images in the batch
"""
imgs_labelled = np.zeros_like(imgs)
for i in range(imgs.shape[0]):
imgs_labelled[i, :, :, :] = draw_labels(imgs[i,:, :, :],
labels[i, :, :],
label_colors,
convert)
return imgs_labelled
#-------------------------------------------------------------------------------
def initialize_uninitialized_variables(sess):
"""
Only initialize the weights that have not yet been initialized by other
means, such as importing a metagraph and a checkpoint. It's useful when
extending an existing model.
"""
uninit_vars = []
uninit_tensors = []
for var in tf.global_variables():
uninit_vars.append(var)
uninit_tensors.append(tf.is_variable_initialized(var))
uninit_bools = sess.run(uninit_tensors)
uninit = zip(uninit_bools, uninit_vars)
uninit = [var for init, var in uninit if not init]
sess.run(tf.variables_initializer(uninit))
#-------------------------------------------------------------------------------
def load_data_source(data_source):
"""
Load a data source given it's name
"""
source_module = __import__('source_'+data_source)
get_source = getattr(source_module, 'get_source')
return get_source()