-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval.py
80 lines (70 loc) · 2.53 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import argparse
import inception_score_tf
import fid_tf
import prd_score as prd
import networks
import datasets
import numpy as np
import torch
def getRealData(size):
loader = datasets.getDataLoader(args.dataset, args.image_size, batch_size=size, train=False)
data_iter = iter(loader)
realdata = data_iter.next()[0]
realdata = np.array(realdata)
if args.dataset == 'mnist':
realdata = realdata.repeat(3, axis=1)
realdata = (realdata / 2 + 0.5) * 255
realdata = realdata.astype(np.uint8)
return realdata
def getFakedata(size):
data = []
for _ in range(0, size, 500):
z = torch.randn(500, args.input_dim).cuda()
with torch.no_grad():
x = netG(z).cpu().numpy()
if args.dataset == 'mnist':
x = x.repeat(3, axis=1)
data.append(x)
data = np.concatenate(data)
data = (data / 2 + 0.5) * 255
data = data.astype(np.uint8)
return data
def getFID():
realdata = getRealData(10000)
fakedata = getFakedata(10000)
fid = fid_tf.get_fid(realdata, fakedata)
print("FID = ", fid)
return fid
def getIS():
data = getFakedata(50000)
mean, std = inception_score_tf.get_inception_score(data, splits=10)
print("IS = ", mean, std)
return mean, std
def getPRD():
realdata = getRealData(10000)
fakedata = getFakedata(10000)
ref_emb = fid_tf.get_inception_activations(realdata)
eval_emb = fid_tf.get_inception_activations(fakedata)
prd_res = prd.compute_prd_from_embedding(eval_data=eval_emb, ref_data=ref_emb)
print("PRD =", prd_res)
return prd_res
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--metric', type=str, default='IS', choices=['IS', 'FID', 'PRD'])
parser.add_argument('--model_path', type=str, default='')
parser.add_argument('--dataset', type=str, default='cifar')
parser.add_argument('--structure', type=str, default='dcgan', choices=['resnet', 'dcgan'])
parser.add_argument('--image_size', type=int, default=32)
parser.add_argument('--input_dim', type=int, default=128)
parser.add_argument('--num_features', type=int, default=64)
args = parser.parse_args()
netG, _ = networks.getGD_SN(args.structure, args.dataset, args.image_size, args.num_features, dim_z=args.input_dim, ignoreD=True)
netG.load_state_dict(torch.load(args.model_path))
netG.cuda()
print(args.model_path)
if args.metric == 'IS':
getIS()
elif args.metric == 'FID':
getFID()
elif args.metric == 'PRD':
getPRD()