-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
219 lines (176 loc) · 6.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from parser_ import get_args
import numpy as np
import random
# utils
config = get_args()
import os
from pathlib import Path
import torch
import torchvision
import torch.optim as optim
import torch.nn as nn
from train_models import train, distill, test_final
from models import prepare_models
from models_cifar10s import prepare_models as prepare_models_cifar
from mmd import mfd, adv_fn
from metabird import Bird
import json
import pprint
from dataset import get_dataloader
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
torch.manual_seed(config.seed)
np.random.seed(config.seed)
random.seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# experiment tracking
import wandb
Path(os.path.join(config.root, str(config.seed), config.log_dir)).mkdir(
exist_ok=True, parents=True
)
wandb.init(
dir=os.path.join(config.root, str(config.seed), config.log_dir),
name=os.path.join(config.root, str(config.seed), config.log_dir),
)
def main(config):
pp = pprint.PrettyPrinter(indent=4)
pp.pprint(config)
log_dir = os.path.join(config.root, str(config.seed), config.log_dir)
Path(log_dir).mkdir(exist_ok=True, parents=True)
# save config
with open(os.path.join(log_dir, "config.txt"), "w") as f:
print(config, file=f)
# get dataloaders
train_dataloader = get_dataloader(config, mode="train")
test_dataloader = get_dataloader(config, mode="test")
if config.meta2:
quiz_dataloader = get_dataloader(config, mode="quiz")
print(f"Quiz dataloader: {len(quiz_dataloader.dataset)}")
else:
quiz_dataloader = test_dataloader
if config.datasetv2:
held_dataloader = get_dataloader(config, mode="test")
else:
held_dataloader = get_dataloader(config, mode="held_out")
print(f"Train dataloader: {len(train_dataloader.dataset)}")
print(f"Test dataloader: {len(test_dataloader.dataset)}")
print(f"Held dataloader: {len(held_dataloader.dataset)}")
if (
config.distill
or config.AT
or config.AT_only
or config.fitnet_s1 or config.fitnet_s2
or config.loss in ["adv", "mse", "kl", "mmd"]
or config.meta2
or config.fwd_loss
):
try:
assert config.pretrained_teacher != ""
except:
print(config.pretrained_teacher)
raise ()
if config.dataset == "cifar10s" and config.student in ["resnet18", "resnet34", "shufflenetv2"]:
student = prepare_models_cifar(config, student=True)
teacher = prepare_models_cifar(config, student=False)
else:
student = prepare_models(config, student=True)
teacher = prepare_models(config, student=False)
# student = nn.DataParallel(student)
student.to(device)
# load teacher weights
state_dict = torch.load(config.pretrained_teacher, map_location=device)[
"checkpoint"
]
teacher = load_model(teacher, config, state_dict)
print(f"Loaded Teacher Model from {config.pretrained_teacher}")
# two stage fitnet or overfit
if config.fitnet_s2:
assert config.continue_student != ""
student = load_model(student, config, torch.load(config.continue_student, map_location=device)["checkpoint"])
if config.test != "":
if config.meta2:
Bird(
config,
student,
teacher,
train_dataloader,
held_dataloader,
test_dataloader,
quiz_dataloader,
).test()
else:
test_final(student, test_dataloader, config, config.test, mode="latest")
test_final(student, test_dataloader, config, config.test, mode="best")
elif config.meta2:
Bird(
config,
student,
teacher,
train_dataloader,
held_dataloader,
test_dataloader,
quiz_dataloader,
)()
elif config.loss in ["mse", "kl", "mmd"]:
mfd(
config,
student,
teacher,
train_dataloader,
quiz_dataloader,
held_dataloader,
test_dataloader,
)
elif config.loss == "adv":
adv_fn(
config,
student,
teacher,
train_dataloader,
quiz_dataloader,
held_dataloader,
test_dataloader,
)
else:
distill(
teacher,
student,
train_dataloader,
held_dataloader,
test_dataloader,
config,
)
else:
# vanilla training
config.student = config.base
config.teacher = config.base
if config.dataset == "cifar10s" and config.base in ["resnet18", "resnet34", "shufflenetv2"]:
model = prepare_models_cifar(config)
else:
model = prepare_models(config)
# continue
if config.continue_student != "":
print(f"Continuing from ckpt {config.continue_student}")
model = load_model(model, config, torch.load(config.continue_student, map_location=device)["checkpoint"])
model.to(device)
if config.test != "":
test_final(model, test_dataloader, config, config.test, mode="latest")
else:
train(model, train_dataloader, held_dataloader, test_dataloader, config)
def load_model(teacher, config, state_dict):
try:
teacher.load_state_dict(state_dict, strict=False)
except:
corrected_state_dict = {}
for k, v in state_dict.items():
if "module." in k:
corrected_state_dict[k[len("module.") :]] = v
else:
corrected_state_dict[k] = v
teacher.load_state_dict(corrected_state_dict, strict=False)
teacher.to(device)
return teacher
if __name__ == "__main__":
main(config)