forked from lmb-freiburg/hand3d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_lifting.py
111 lines (92 loc) · 3.97 KB
/
training_lifting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#
# ColorHandPose3DNetwork - Network for estimating 3D Hand Pose from a single RGB Image
# Copyright (C) 2017 Christian Zimmermann
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
from __future__ import print_function, unicode_literals
import tensorflow as tf
import os
import sys
from nets.PosePriorNetwork import PosePriorNetwork
from data.BinaryDbReader import BinaryDbReader
from utils.general import LearningRateScheduler
# Chose which variant to evaluate
# VARIANT = 'direct'
# VARIANT = 'bottleneck'
# VARIANT = 'local'
# VARIANT = 'local_w_xyz_loss'
VARIANT = 'proposed'
# training parameters
train_para = {'lr': [1e-5, 1e-6],
'lr_iter': [60000],
'max_iter': 80000,
'show_loss_freq': 1000,
'snapshot_freq': 5000,
'snapshot_dir': 'snapshots_lifting_%s' % VARIANT}
# get dataset
dataset = BinaryDbReader(mode='training',
batch_size=8, shuffle=True, hand_crop=True, use_wrist_coord=False,
coord_uv_noise=True, crop_center_noise=True, crop_offset_noise=True, crop_scale_noise=True)
# build network graph
data = dataset.get()
# build network
net = PosePriorNetwork(VARIANT)
# feed trough network
evaluation = tf.placeholder_with_default(True, shape=())
_, coord3d_pred, R = net.inference(data['scoremap'], data['hand_side'], evaluation)
# Start TF
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
tf.train.start_queue_runners(sess=sess)
# Loss
loss = 0.0
if (VARIANT == 'direct') or (VARIANT == 'bottleneck'):
loss = tf.reduce_mean(tf.square(coord3d_pred - data['keypoint_xyz21_normed']))
elif VARIANT == 'local':
loss += tf.reduce_mean(tf.square(coord3d_pred - data['keypoint_xyz21_local']))
elif VARIANT == 'local_w_xyz_loss':
from utils.relative_trafo import bone_rel_trafo_inv
# transform the local coordinates back into xyz for the loss
coord3d_pred_xyz = bone_rel_trafo_inv(coord3d_pred)
loss += tf.reduce_mean(tf.square(coord3d_pred_xyz - data['keypoint_xyz21_normed']))
elif VARIANT == 'proposed':
loss += tf.reduce_mean(tf.square(coord3d_pred - data['keypoint_xyz21_can']))
loss += tf.reduce_mean(tf.square(R - data['rot_mat']))
# Solver
global_step = tf.Variable(0, trainable=False, name="global_step")
lr_scheduler = LearningRateScheduler(values=train_para['lr'], steps=train_para['lr_iter'])
lr = lr_scheduler.get_lr(global_step)
opt = tf.train.AdamOptimizer(lr)
train_op = opt.minimize(loss)
# init weights
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(max_to_keep=1, keep_checkpoint_every_n_hours=4.0)
# snapshot dir
if not os.path.exists(train_para['snapshot_dir']):
os.mkdir(train_para['snapshot_dir'])
print('Created snapshot dir:', train_para['snapshot_dir'])
# Training loop
print('Starting to train ...')
for i in range(train_para['max_iter']):
_, loss_v = sess.run([train_op, loss])
if (i % train_para['show_loss_freq']) == 0:
print('Iteration %d\t Loss %.1e' % (i, loss_v))
sys.stdout.flush()
if (i % train_para['snapshot_freq']) == 0:
saver.save(sess, "%s/model" % train_para['snapshot_dir'], global_step=i)
print('Saved a snapshot.')
sys.stdout.flush()
print('Training finished. Saving final snapshot.')
saver.save(sess, "%s/model" % train_para['snapshot_dir'], global_step=train_para['max_iter'])