-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCombination_Sum.py
51 lines (38 loc) · 1.43 KB
/
Combination_Sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
All numbers (including target) will be positive integers.
Elements in a combination (a1, a2, ... , ak) must be in non-descending order. (ie, a1 <= a2 <= ... <= ak).
The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7 and target 7,
A solution set is:
[7]
[2, 2, 3]
"""
class Solution:
# @param candidates, a list of integers
# @param target, integer
# @return a list of lists of integers
def combinationSum(self, candidates, target):
result = []
candidates.sort()
self.combinationSumHelper(candidates, 0, target, [], result)
return result
def combinationSumHelper(self, candidates, start, target, combination, result):
# base case we reached the target
if target == 0:
result.append(list(combination))
return
for i in range(start, len(candidates)):
new_target = target - candidates[i]
# can lead to new combination
if new_target >= 0:
combination.append(candidates[i])
self.combinationSumHelper(candidates, i, new_target, combination, result) # recurse
combination.pop() # backtrack
# no way to get to the target from this start as array is sorted
else:
break
s = Solution()
print s.combinationSum([2,3,6,7], 7)