-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfenics_fokker_planck_old.py
153 lines (122 loc) · 3.86 KB
/
fenics_fokker_planck_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d, Axes3D
from dolfin import *
from fenics import *
from matplotlib import cm
import os
from scipy.integrate import odeint
from tqdm import tqdm # Import tqdm library for progress bar
# model parameters
sigma = 10.0
rho = 28.0
beta = 8.0 / 3.0
T = 1 # final time
dt = 0.1 # T / num_steps # time step size
num_steps = int(T / dt) # number of time steps
np.random.seed(42)
Intesity = 1
print("time step", dt)
# Create mesh and define function space
nx = ny = nz = 40
mesh = BoxMesh(Point(-1, -1, -1), Point(1, 1, 1), nx, ny, nz)
n_ = FacetNormal(mesh)
V = FunctionSpace(mesh, 'P', 1)
W = VectorFunctionSpace(mesh, 'P', 1)
def white_noise():
dw1 = np.random.normal(0,1)
dw2 = np.random.normal(0,1)
dw3 = np.random.uniform(0,1)
return dw1, dw2, dw3
dw = white_noise()
# Define diffusion matrix (D)
D_matrix = Constant(
(
(Intesity*dw[0]*dw[0], Intesity*dw[0]*dw[1], Intesity*dw[0]*dw[2]),
(Intesity*dw[1]*dw[0], Intesity*dw[1]*dw[1], Intesity*dw[1]*dw[2]),
(Intesity*dw[2]*dw[0], Intesity*dw[2]*dw[1], Intesity*dw[2]*dw[2])
)
)
velocity = Expression(
(
'sigma * (x[1] - x[0])' ,
'x[0] * (rho - x[2]) - x[1]' ,
'x[0] * x[1] - beta * x[2]'
), # LORENZ
sigma = sigma,
rho = rho,
beta = beta,
dw1 = white_noise()[0],
dw2 = white_noise()[1],
dw3 = white_noise()[2],
Intensity = Intesity,
degree = 3)
vel = interpolate(velocity, W)
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
u_ = Function(V)
u_n = Function(V)
# Define initial distribution
u0 = Expression(
'(1.0 / (2.0 * pi * sigma_x * sigma_y * sigma_z)) * exp(-((pow(x[0] - x0, 2) / (2 * pow(sigma_x, 2))) + (pow(x[1] - y0, 2) / (2 * pow(sigma_y, 2))) + (pow(x[2] - z0, 2) / (2 * pow(sigma_z, 2)))))',
degree = 3,
x0 = 0.0,
y0 = 0.0,
z0 = 0.0, # Center coordinates
sigma_x = 0.3,
sigma_y = 0.3,
sigma_z = 0.3) # Standard deviations along each axis
u_n = interpolate(u0, V)
k = Constant(dt)
# forward finite differences
# drift (volume)
# diffusion (volume)
# diffusion (surface)
# drift (surface)
F = dot( (u - u_n)/k, v) * dx +\
inner(grad(u), grad(v)) * dx \
- u * inner(vel, grad(v)) * dx \
+ v * inner(grad(u), n_) * ds\
- u * v * inner(vel, n_) * ds \
a, L = lhs(F), rhs(F)
# Create VTK file for saving solution
vtkfile = File('Fokker-planck_stochastic_large_time_step_Solution/fokker-planck.pvd')
# Time-stepping
t = 0
A = assemble(a)
b = assemble(L)
plot_directory = 'Fokker-planck_stochastic_pdf_large_time_step_graphs'
os.makedirs(plot_directory, exist_ok=True)
# Plot initial distribution
plt.figure(figsize=(30, 30))
plt.plot(u_n.compute_vertex_values(mesh))
# Save plot
plt.savefig(f'{plot_directory}/initial_distribution.png')
plt.close()
print(num_steps)
# Initialize tqdm with total number of steps
progress_bar = tqdm(total=num_steps, desc="Solving Fokker-Planck equation")
for n in range(num_steps):
t += dt
u_n.rename("probability", "")
vtkfile << (u_n, t)
A = assemble(a)
b = assemble(L)
# Compute solution
solve(A, u_.vector(), b)
# Update previous solution
u_n.assign(u_)
pdf_values = u_.compute_vertex_values(mesh)
# Create a figure with specified size
fig = plt.figure(figsize=(30, 30))
# Plot the normalized PDF values
plt.plot(pdf_values, label='PDF Values')
plt.savefig(f'{plot_directory}/pdf_1d_plot_at_t_{n}.png')
plt.close()
# Update progress bar
progress_bar.update(1)
# Close tqdm progress bar
progress_bar.close()
u_n.rename("probability", "")
vtkfile << (u_n, t)