-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
191 lines (163 loc) · 7.57 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import json
import argparse
import datetime
import warnings
import torch
import numpy as np
import sys
import os
sys.path.append('./models')
from models import get_model
from torch.utils.data import DataLoader
from tqdm import tqdm
from datasets import disable_caching
disable_caching()
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
# models
parser.add_argument("--model_name", type=str, default="BLIP2")
parser.add_argument("--device", type=str, default="0")
parser.add_argument("--batch_size", type=int, default=1)
# datasets
parser.add_argument("--dataset_name", type=str, default=None, help='Your dataset name should be one element of the list as followed : [tg, og, fg, rm_critique, rm_feedback, assistance, navigation, hp_h2m, hp_m2l, vqa]')
parser.add_argument('--annotation_path', type=str, required=True)
# result_path
parser.add_argument("--answer_path", type=str, default="./tiny_answers")
parser.add_argument("--data_mode", type=str, default=None, help="You can chooce 'image' or 'video' type of your data")
parser.add_argument("--video_folder", type=str, default="/apdcephfs_cq10/share_1150325/csj/videgothink/goalstep_val_hp_video")
parser.add_argument("--image_folder", type=str, default=None)
# parser.add_argument("--planning", action="store_true")
args = parser.parse_args()
return args
def load_dataset(args):
# 确保文件夹存在
folder_check = {
'image': args.image_folder,
'video': args.video_folder
}
folder_path = folder_check.get(args.data_mode)
if folder_path and not os.path.exists(str(folder_path)):
raise FileNotFoundError(f"{args.data_mode.capitalize()} folder '{folder_path}' does not exist.")
with open(args.annotation_path, 'r') as f:
dataset = json.load(f)
for i, d in enumerate(dataset):
if args.data_mode == 'image':
image_filename = d.get('image_path', [''])[0]
# print(f"diffeerence : {d.get('image_path', [''])[0]} and {d.get('image_path', [''])}")
if not image_filename:
warnings.warn(f"No image found in dataset entry {i}.", UserWarning)
dataset[i]['images'] = os.path.join(args.image_folder, image_filename)
elif args.data_mode == 'video':
video_filename = d.get('video_path', '')
if not video_filename:
warnings.warn(f"No video found in dataset entry {i}.", UserWarning)
dataset[i]['video'] = os.path.join(args.video_folder, video_filename)
return dataset
def get_generation_args(dataset_name):
print(f"---------function dataset name {dataset_name}------------")
# 基础参数模板
base_args = {'max_new_tokens': 300}
# 定义不同数据集的特定配置
dataset_configs = {
"tg": {'max_new_tokens': 128, 'tg': True},
"og": {'max_new_tokens': 128, 'og': True},
"fg": {'max_new_tokens': 128, 'fg': True},
"rm_critique": {'max_new_tokens': 128, 'rm_critique': True},
"rm_feedback": {'max_new_tokens': 128, 'rm_feedback': True},
"assistance": {'max_new_tokens': 300, 'planning': True},
"navigation": {'max_new_tokens': 300, 'planning': True},
"hp_h2m": {'max_new_tokens': 300, 'hp_h2m': True},
"hp_m2l": {'max_new_tokens': 300, 'hp_m2l': True},
"vqa":{'max_new_tokens': 300}
}
# 获取并合并配置
config = dataset_configs.get(dataset_name)
if config is None:
# 如果没有找到匹配的配置,警告
warnings.warn(f"Warning: No specific configuration found for dataset '{dataset_name}'. Using base configuration.")
config = base_args
return {**base_args, **config}
def main(args):
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.device)
model_names = args.model_name.split(',')
time = datetime.datetime.now().strftime("%m%d-%H%M")
dataset_name = args.dataset_name
print(f"dataset name: {dataset_name}")
print(f"Running inference on {dataset_name}")
for model_name in model_names:
print(f"Running inference: {model_name}")
if 'blip2' in model_name.lower() or 'llava' in model_name.lower():
batch_size = 1
else:
batch_size = args.batch_size
device = torch.device('cuda') if torch.cuda.is_available() else "cpu"
model = get_model(model_name, device=device)
dataset = load_dataset(args)
dataloader = DataLoader(dataset, batch_size=1, collate_fn=lambda batch: {key: [dict[key] for dict in batch] for key in batch[0]})
model_answers = []
ref_answers = []
question_files = []
q_id = 0
for batch in tqdm(dataloader, desc=f"Running inference: {model_name} on {dataset_name}"):
questions = batch['question']
input_media = {
'image': batch.get('images', None),
'video': batch.get('video', None)
}.get(args.data_mode, None) # choose the right type of data mode
print(f"args.data_mode:{args.data_mode} , dataset_name: {dataset_name}, media: {input_media}")
if args.batch_size == 1:
try:
output = model.generate(input_media[0], questions[0], **get_generation_args(dataset_name))
print(output)
outputs = [output]
except Exception as e:
import traceback
traceback.print_exc()
print(f"Error: {e}")
outputs = ['']
else:
outputs = model.batch_generate(input_media, questions, **get_generation_args(dataset_name))
for i, (question, answer, pred) in enumerate(zip(batch['question'], batch['answer'], outputs)):
# answer_dict={'question': questions, 'prediction': pred,
# 'gt_answers': answer}
# model_answers.append(answer_dict)
model_answers.append({
'question_id': q_id,
'model_id': model_name,
'choices':[{'index': 0, "turns": [pred]}]
})
ref_answers.append({
'question_id': q_id,
'model_id': 'ground_truth',
'choices':[{'index': 0, "turns": [answer]}]
})
question_files.append({
'question_id': q_id,
'turns': [question]
})
q_id += 1
torch.cuda.empty_cache()
del model
result_folder = args.answer_path
if not os.path.exists(result_folder):
os.makedirs(result_folder)
model_answer_folder = os.path.join(result_folder, 'model_answer')
if not os.path.exists(model_answer_folder):
os.makedirs(model_answer_folder)
with open(os.path.join(model_answer_folder, f"{model_name}.jsonl"), 'w') as f:
for pred in model_answers:
f.write(json.dumps(pred) + '\n')
ref_answer_folder = os.path.join(result_folder, 'reference_answer')
if not os.path.exists(ref_answer_folder):
os.makedirs(ref_answer_folder)
with open(os.path.join(ref_answer_folder, "ground_truth.jsonl"), 'w') as f:
for ref in ref_answers:
f.write(json.dumps(ref) + '\n')
with open(os.path.join(result_folder, "question.jsonl"), 'w') as f:
for q in question_files:
f.write(json.dumps(q) + '\n')
if __name__ == "__main__":
args = parse_args()
print(args)
main(args)