-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfine_tune_te.py
929 lines (849 loc) · 43.6 KB
/
fine_tune_te.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
### from __future__ import print_function
'''
This code is based on https://github.com/FLHonker/AMTML-KD-code
'''
import os
import time
import logging
import argparse
import random
import numpy as np
# from visdom import Visdom
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader, ConcatDataset
from utils import *
import dataset
from utils.params import get_params
from utils.early_stop import EarlyStopping
from sklearn.preprocessing import LabelEncoder,MultiLabelBinarizer
from sklearn.model_selection import ParameterGrid
from lightning_fabric.utilities.seed import seed_everything
import shutil
import sys
import json
from loguru import logger
import torchmetrics
from tqdm.autonotebook import tqdm
from transformers.optimization import get_cosine_schedule_with_warmup, get_constant_schedule_with_warmup
import math
import dadaptation
from torch.optim.lr_scheduler import ReduceLROnPlateau
from sklearn.metrics import classification_report
from seqeval.metrics import classification_report as seqeval_classification_report
from seqeval.metrics import f1_score as seqval_f1_score
# Teacher models:
# VGG11/VGG13/VGG16/VGG19, GoogLeNet, AlxNet, ResNet18, ResNet34,
# ResNet50, ResNet101, ResNet152, ResNeXt29_2x64d, ResNeXt29_4x64d,
# ResNeXt29_8x64d, ResNeXt29_32x64d, PreActResNet18, PreActResNet34,
# PreActResNet50, PreActResNet101, PreActResNet152,
# DenseNet121, DenseNet161, DenseNet169, DenseNet201,
# BERT, RoBERTa
import models
g_exp_config = None
# Student models:
# myNet, LeNet, FitNet
# Transformer Encoder
def align_labels_with_tokens(labels, word_ids):
new_labels = []
current_word = None
for word_id in word_ids:
if word_id != current_word:
# Start of a new word!
current_word = word_id
label = -100 if word_id is None else labels[word_id]
new_labels.append(label)
elif word_id is None:
# Special token
new_labels.append(-100)
else:
# Same word as previous token
label = labels[word_id]
# Shouldn't occur unseen I-xxx label
# # If the label is B-XXX we change it to I-XXX
# if label % 2 == 1:
# label += 1
new_labels.append(label)
return new_labels
# def truncate_slot_labels(labels, word_ids):
def collate_fn_cdc(batch, tokenizer, max_seq_length, lEncs):
texts = []
cd_labels = []
# print(len(batch),len(batch[0]))
for tokens_list, domain_labels in zip(batch[0],batch[1]):
if "Llama" in tokenizer.__class__.__name__:
sep = [tokenizer.eos_token]
else:
sep = [tokenizer.sep_token]
concat_tokens = []
# print("tokens_list ",tokens_list)
# print("tokens_list ",tokens_list)
for tokens in tokens_list:
concat_tokens += tokens + sep
concat_tokens = concat_tokens[:-1]
texts.append(concat_tokens)
cd_labels.append(domain_labels)
# print("texts ",texts[0])
# print("cd_labels 1",cd_labels)
cd_labels = lEncs['cdc'].transform(cd_labels)
# print("cd_labels 2",cd_labels)
# print("batch ",batch)
# print("texts ",texts[0])
inputs = tokenizer(texts,is_split_into_words=True,padding=True,\
truncation=True,max_length=max_seq_length,return_tensors='pt')
inputs = inputs.to('cuda')
cd_labels = torch.tensor(cd_labels).cuda()
labels = {'cdc':cd_labels}
return inputs, labels
# collate batch data for differnet models
def collate_fn_dc_sf_di(batch, tokenizer, max_seq_length,lEncs):
texts = []
s_labels = []
tmp_s_labels = []
i_labels = []
d_labels = []
p_labels = []
tmp_p_labels = []
# print(len(batch),len(batch[0]))
for tokens,slot_label, intent_label, domain_label, pos_label in zip(batch[0],batch[1],batch[2],batch[3],batch[4]):
texts.append(tokens)
tmp_s_labels.append(slot_label)
assert len(tokens) == len(slot_label), "ERROR! {}:{}".format(len(tokens),len(slot_label))
i_labels.append(intent_label)
d_labels.append(domain_label)
tmp_p_labels.append(pos_label)
tmp_s_labels = [lEncs['sf'].transform(one_s_labels) for one_s_labels in tmp_s_labels]
tmp_p_labels = [lEncs['pos'].transform(one_p_labels) for one_p_labels in tmp_p_labels]
# print("batch ",batch)
inputs = tokenizer(texts,is_split_into_words=True,padding=True,\
truncation=True,max_length=max_seq_length,return_tensors='pt')
# keep the word-wise labels but flatten here, because we will merge the token to words later
# for i, labels in enumerate(tmp_s_labels):
# word_ids = inputs.word_ids(i)
# s_labels.append(align_labels_with_tokens(labels, word_ids))
tmp_s_labels = [l for labels in tmp_s_labels for l in labels]
tmp_p_labels = [l for labels in tmp_p_labels for l in labels]
inputs = inputs.to('cuda')
s_labels = torch.tensor(tmp_s_labels).cuda()
i_labels = torch.tensor(lEncs['id'].transform(i_labels)).cuda()
d_labels = torch.tensor(lEncs['dc'].transform(d_labels)).cuda()
p_labels = torch.tensor(tmp_p_labels).cuda()
labels = {'sf':s_labels,'dc':d_labels,'id':i_labels,'pos':p_labels}
return inputs, labels
def collate_fn_default(samples):
tokens,slot_label, intent_label, domain_label, pos_label = [],[],[],[],[]
for turn, slot_value_pairs, state, domain, pos_tags in samples:
tokens.append(turn)
slot_label.append(slot_value_pairs)
intent_label.append(state)
domain_label.append(domain)
pos_label.append(pos_tags)
return (tokens,slot_label, intent_label, domain_label, pos_label)
def collate_fn_default_cc(samples):
tokens, cc_domain_label = [],[]
# print("collate_fn_default_cc -----------")
for conv, domains in samples:
tokens.append(conv)
cc_domain_label.append(domains)
# print("tokens ",tokens[0])
return (tokens,cc_domain_label)
# avg diatill
def distillation_loss(y, labels, logits, T, alpha=0.7):
return nn.KLDivLoss(reduction="batchmean")(F.log_softmax(y/T,dim=1), logits) * (T*T * 2.0 * alpha) + F.cross_entropy(y, labels) * (1. - alpha)
# triplet loss
triplet_loss = nn.TripletMarginLoss(margin=0.2, p=2).cuda()
# get max infoentropy scores
# input: Tensor[3, 128, 10]
def maxInfo_logits(te_scores_Tensor):
used_score = torch.FloatTensor(te_scores_Tensor.size(1), te_scores_Tensor.size(2)).cuda()
ents = torch.FloatTensor(te_scores_Tensor.size(0), te_scores_Tensor.size(1)).cuda()
logp = torch.log2(te_scores_Tensor)
plogp = -logp.mul(te_scores_Tensor)
for i,te in enumerate(plogp):
ents[i] = torch.sum(te, dim=1)
max_ent_index = torch.max(ents, dim=0).indices # 取每一列最大值index
# print(max_ent_index)
for i in range(max_ent_index.size(0)):
used_score[i] = te_scores_Tensor[max_ent_index[i].item()][i]
# print(used_score)
return used_score
# avg logits
# input: Tensor[3, 128, 10]
def avg_logits(te_scores_Tensor):
# print(te_scores_Tensor.size())
mean_Tensor = torch.mean(te_scores_Tensor, dim=1)
# print(mean_Tensor)
return mean_Tensor
# random logits
def random_logits(te_scores_Tensor):
return te_scores_Tensor[np.random.randint(0, 1, 1)]
# input: t1, t2 - triplet pair
def triplet_distance(t1, t2):
return (t1 - t2).pow(2).sum()
# get triplets
def random_triplets(st_maps, te_maps):
conflict = 0
st_triplet_list = []
triplet_set_size = st_maps.size(0)
batch_list = [x for x in range(triplet_set_size)]
for i in range(triplet_set_size):
triplet_index = random.sample(batch_list, 3)
anchor_index = triplet_index[0] # denote the 1st triplet item as anchor
st_triplet = st_maps[triplet_index]
te_triplet = te_maps[triplet_index]
distance_01 = triplet_distance(te_triplet[0], te_triplet[1])
distance_02 = triplet_distance(te_triplet[0], te_triplet[2])
if distance_01 > distance_02:
conflict += 1
# swap postive and negative
st_triplet[1], st_triplet[2] = st_triplet[2], st_triplet[1]
st_triplet_list.append(st_triplet)
st_triplet_batch = torch.stack(st_triplet_list, dim=1)
return st_triplet_batch
# get the smallest conflicts index
def smallest_conflict_teacher(st_maps, te_maps_list):
# print("st_maps ",st_maps.shape)
index = 0
triplet_set_size = st_maps.size(0)
min_conflict = 1
batch_list = [x for x in range(triplet_set_size)]
triplet_index = random.sample(batch_list, 3)
anchor_index = triplet_index[0] # denote the 1st triplet item as anchor
for idx, te_maps in enumerate(te_maps_list):
# print("te_maps ",te_maps.shape)
conflict = 0
for i in range(triplet_set_size):
st_triplet = st_maps[triplet_index]
te_triplet = te_maps[triplet_index]
# print("(t1.shape, t2.shape)",te_triplet.shape, te_triplet.shape)
distance_01 = triplet_distance(te_triplet[0], te_triplet[1])
distance_02 = triplet_distance(te_triplet[0], te_triplet[2])
if distance_01 > distance_02:
conflict += 1
conflict /= triplet_set_size
conflict = min(conflict, (1-conflict))
if conflict < min_conflict:
index = idx
return index
def configure_optimizer(exp_cfg,all_models,total_steps):
all_model_params = []
lr = exp_cfg['lr']
pytorch_total_params = 0
for model in all_models:
all_model_params.append(dict(params=model.parameters(), lr=lr))
pytorch_total_params += sum(p.numel() for p in model.parameters())
logger.info("Total Parameters: {} M".format(pytorch_total_params*1e-6))
if exp_cfg['optimizer'] == 'adamw':
optimizer = torch.optim.AdamW(all_model_params, lr=lr)
elif exp_cfg['optimizer']== 'adam':
optimizer = torch.optim.Adam(all_model_params, lr=lr)
elif exp_cfg['optimizer']== 'rmsprop':
optimizer = torch.optim.RMSprop(all_model_params, lr=lr)
elif exp_cfg['optimizer']== 'sgd':
for model_params in all_model_params:
model_params.update(dict(momentum=0.9, weight_decay=5e-4))
optimizer = torch.optim.SGD(all_model_params, lr=lr, momentum=0.9)
# elif exp_cfg.optimizer == 'd_adaptation':
# # By setting decouple=True, it use AdamW style weight decay
# # lr is needed, see https://github.com/facebookresearch/dadaptation
# optimizer = dadaptation.DAdaptAdam(all_model_params, lr=lr, \
# decouple=True,log_every=10)
if exp_cfg['warmup'] < 1:
warmup = int(exp_cfg['warmup'] * total_steps)
else:
warmup = exp_cfg['warmup']
if exp_cfg['lrscheduler'] == 'cosinewarmup':
scheduler = get_cosine_schedule_with_warmup(optimizer, warmup, total_steps, last_epoch=-1)
elif exp_cfg['lrscheduler'] == 'constantwarmup':
scheduler = get_constant_schedule_with_warmup(optimizer,num_warmup_steps=warmup,last_epoch=-1)
return optimizer, scheduler
def merge_logits_for_sf(before_classifier, logits, inputs):
# print("\n\n============================================================")
# print("before_classifier, logits ",before_classifier.shape, logits.shape)
scatter_index = []
select_index = []
seq_len = before_classifier.shape[1]
new_pos = 0
for i in range(len(logits)):
word_ids = inputs.word_ids(i)
last_w_id = None
for w_pos, w_id in enumerate(word_ids):
if w_id is None:
continue
select_index.append(i*seq_len + w_pos)
if last_w_id != w_id:
scatter_index.append(new_pos)
new_pos += 1
else:
scatter_index.append(scatter_index[-1])
last_w_id = w_id
select_index = torch.tensor(select_index).cuda()
# print("select_index new_pos scatter_index",select_index.shape,new_pos, len(scatter_index))
wt_before_classifier = torch.index_select(before_classifier.flatten(0,1),dim=0,index=select_index)
wt_logits = torch.index_select(logits.flatten(0,1),dim=0,index=select_index)
# print("2 wt_before_classifier, logits ",wt_before_classifier.shape, wt_logits.shape)
word_before_classifier = torch.zeros(new_pos,before_classifier.shape[-1],dtype=logits.dtype).cuda()
word_logits = torch.zeros(new_pos,logits.shape[-1],dtype=logits.dtype).cuda()
# print("word_before_classifier, word_logits ",word_before_classifier.shape, word_logits.shape)
scatter_index_b = torch.tensor(scatter_index).reshape(-1,1).repeat_interleave(before_classifier.shape[-1],dim=1).cuda()
scatter_index_l = torch.tensor(scatter_index).reshape(-1,1).repeat_interleave(logits.shape[-1],dim=1).cuda()
# print("scatter_index_b scatter_index_l",scatter_index_b.shape, scatter_index_l.shape)
word_before_classifier.scatter_add_(0, scatter_index_b, wt_before_classifier)
word_logits.scatter_add_(0, scatter_index_l, wt_logits)
# print("f word_before_classifier, word_logits", word_before_classifier.shape,word_logits.shape)
return word_before_classifier, word_logits
# def val_or_test_compute_task_metrics(task, task_metrics, labels, st_before_classifier, st_logits, st_inputs):
# if task in ('dc','id','cdc'):
# st_before_classifier = st_before_classifier[:,0,:]
# st_logits = st_logits[:,0,:]
# elif task in ('sf','pos'):
# st_before_classifier, st_logits = merge_logits_for_sf(st_before_classifier, st_logits, st_inputs)
# out_for_record = st_logits.detach().cpu()
# labels_for_record = labels.cpu()
# acc = task_metrics['acc'](out_for_record, labels_for_record)
# f1 = task_metrics['f1'](out_for_record, labels_for_record)
# # compute loss
# loss = F.cross_entropy(st_logits, labels)
# loss_value = loss.detach().item()
# task_metrics['ce'].update(torch.tensor([loss_value]*len(st_logits)))
# metric_resutls = {'acc':acc,'f1':f1,'ce':loss_value}
# return metric_resutls, out_for_record, labels_for_record
def init_all_task_metrics_train(all_te_models,data_cfg):
all_task_metrics = {}
params = data_cfg.get('params',{})
if params.get('cc', False):
for task, te_models in all_te_models.items():
nclasses = te_models[0].head_cfg['nclasses']
mif1_metric = torchmetrics.F1Score(task='multilabel', average = 'micro', num_labels=nclasses)
loss_metric = torchmetrics.aggregation.MeanMetric()
all_task_metrics[task] = dict(mif1 = mif1_metric, bce=loss_metric)
else:
for task, te_models in all_te_models.items():
nclasses = te_models[0].head_cfg['nclasses']
acc_metric = torchmetrics.Accuracy(task='multiclass', num_classes=nclasses)
f1_metric = torchmetrics.F1Score(task='multiclass', average = 'macro', num_classes=nclasses)
mif1_metric = torchmetrics.F1Score(task='multiclass', average = 'micro', num_classes=nclasses)
loss_metric = torchmetrics.aggregation.MeanMetric()
all_task_metrics[task] = dict(acc = acc_metric, f1 =f1_metric, mif1 = mif1_metric, ce=loss_metric)
return all_task_metrics
def init_all_task_metrics_val_or_test(all_te_models,data_cfg):
all_task_metrics = {}
params = data_cfg.get('params',{})
if params.get('cc', False):
for task, te_models in all_te_models.items():
nclasses = te_models[0].head_cfg['nclasses']
mif1_metric = torchmetrics.F1Score(task='multilabel', average = 'micro', num_labels=nclasses)
loss_metric = torchmetrics.aggregation.MeanMetric()
all_task_metrics[task] = dict(mif1 = mif1_metric, bce=loss_metric)
else:
for task, te_models in all_te_models.items():
nclasses = te_models[0].head_cfg['nclasses']
acc_metric = torchmetrics.Accuracy(task='multiclass', num_classes=nclasses)
f1_metric = torchmetrics.F1Score(task='multiclass', average = 'macro', num_classes=nclasses)
mif1_metric = torchmetrics.F1Score(task='multiclass', average = 'micro', num_classes=nclasses)
loss_metric = torchmetrics.aggregation.MeanMetric()
all_task_metrics[task] = dict(acc = acc_metric, f1 =f1_metric, mif1 = mif1_metric, ce=loss_metric)
return all_task_metrics
def make_log(task_results_dict):
templete = "Task: [{}]:"
str_log = ''
for task, task_metric_resutls in task_results_dict.items():
if task == 'total_loss':
continue
# print(task_metric_resutls)
keys = sorted(list(task_metric_resutls.keys()))
str_log += templete.format(task)
for key in keys:
str_log += " {}: {},".format(key, task_metric_resutls[key])
str_log = str_log[:-1] + "\n"
str_log = f"Total Loss: {task_results_dict['total_loss']} \n" + str_log
return str_log
def metrics_compute_epoch(all_task_metrics):
task_results_dict = {}
for task, task_metrics in all_task_metrics.items():
task_results = {}
for metric_name, metric_obj in task_metrics.items():
task_results[metric_name] = metric_obj.compute()
metric_obj.reset()
task_results_dict[task] = task_results
return task_results_dict
def get_save_model_name(data_cfg, exp_cfg, all_te_models):
temodel = None
for k, v in all_te_models.items():
temodel = v[0]
break # should break here, because only support fine tune one teacher each time
s_name = temodel.model_name
s_name = s_name.replace('/','_')
s_name = '{}_{}'.format(s_name, exp_cfg['str_name'])
# for name in data_cfg['names']:
# s_name += f'_{name}'
return s_name
# train with multi-teacher
def train(exp_cfg, data_cfg, all_te_models, train_loader, lEncs, exp_root_path, val_loader=None):
logger.info('Training:')
all_task_metrics = init_all_task_metrics_train(all_te_models,data_cfg)
total_loss_metric = torchmetrics.aggregation.MeanMetric()
s_name = get_save_model_name(data_cfg, exp_cfg, all_te_models)
stop_criteria = EarlyStopping(minmax = exp_cfg['mode'],patience=exp_cfg['stop_patience'], \
delta=1e-6, path='results/teachers', trace_func=logger.info, save_every_eposh=True, model_name=s_name)
max_seq_len = data_cfg['max_seq_len']
Temp = exp_cfg['temperature']
save_stats = {'train':{'batch':[],'epoch':[]},'val':{'batch':[],'epoch':[]},'test':{'batch':[],'epoch':[]}}
train_data_len = len(train_loader.dataset)
total_steps = int(exp_cfg['epochs'] * train_data_len / exp_cfg['batch_size'])
all_models =[]
for k, v in all_te_models.items():
all_models += v
for te in v:
te.train()
params = data_cfg.get('params',{})
optimizer, scheduler = configure_optimizer(exp_cfg,all_models,total_steps)
with tqdm(range(exp_cfg['epochs']),desc='Train Epoch Loop') as tbar2:
for epoch_idx in tbar2:
# for epoch_idx in range(exp_cfg['epochs']):
with tqdm(train_loader,desc='Train Batch Loop') as tbar3:
for batch_idx, raw_batch in enumerate(tbar3):
optimizer.zero_grad()
bs = len(raw_batch)
total_loss = None
task_results_dict = {}
for task, te_models in all_te_models.items():
task_metrics = all_task_metrics[task]
te_model = te_models[0]
if params.get('cc', False):
inputs, labels = collate_fn_cdc(raw_batch, te_model.tokenizer,max_seq_len,lEncs)
else:
inputs, labels = collate_fn_dc_sf_di(raw_batch, te_model.tokenizer,max_seq_len,lEncs)
labels = labels[task]
# with torch.no_grad(): # the last linear layer should have grad
t_before_classifier, t_logits = te_model(inputs)
# print("1 t_before_classifier ",t_before_classifier.shape, t_logits.shape, len(labels))
if task in ('sf','pos'):
t_before_classifier, t_logits = merge_logits_for_sf(t_before_classifier, t_logits, inputs)
# print("2 t_before_classifier ",t_before_classifier.shape, t_logits.shape, len(labels))
out_for_record = t_logits.detach().cpu()
labels_for_record = labels.cpu()
if params.get('cc', False):
preds = nn.functional.sigmoid(out_for_record)
preds = torch.where(preds>0.5,1,0)
mif1 = task_metrics['mif1'](preds, labels_for_record)
loss = nn.functional.binary_cross_entropy_with_logits(t_logits, labels.float(), weight=None, size_average=None,reduce=None, reduction='mean')
loss_value = loss.detach().item()
metric_resutls = {'mif1':mif1,'bce':loss_value}
else:
acc = task_metrics['acc'](out_for_record, labels_for_record)
f1 = task_metrics['f1'](out_for_record, labels_for_record)
mif1 = task_metrics['mif1'](out_for_record, labels_for_record)
# compute loss
loss = F.cross_entropy(t_logits, labels)
loss_value = loss.detach().item()
task_metrics['ce'].update(torch.tensor([loss_value]*len(t_logits)))
metric_resutls = {'acc':acc,'f1':f1,'ce':loss_value,'mif1':mif1}
task_results_dict[task] = metric_resutls
task_results_dict['total_loss'] = loss_value
break
loss.backward()
optimizer.step()
scheduler.step()
save_stats['train']['batch'].append(task_results_dict)
batch_log = make_log(task_results_dict)
# print("batch_log ",batch_log)
tbar3.set_description(batch_log)
epoch_task_results_dict = metrics_compute_epoch(all_task_metrics)
if params.get('cc', False):
epoch_task_results_dict['total_loss'] = task_results_dict[task]['bce']
else:
epoch_task_results_dict['total_loss'] = task_results_dict[task]['ce']
save_stats['train']['epoch'].append(epoch_task_results_dict)
train_epoch_log = make_log(epoch_task_results_dict)
if val_loader is not None:
val_test_epoch_log, epoch_task_results_dict = val_or_test(exp_cfg, data_cfg, all_te_models,
val_loader, lEncs, save_stats, split='val')
epoch_log = 'Epoch: {}, Train: {} \nVal: {}'.format(epoch_idx, train_epoch_log, val_test_epoch_log)
tbar2.set_description(epoch_log)
logger.info(epoch_log)
# Check Stop Criterian
if exp_cfg['stop_strategy'] == 'early_stop':
if exp_cfg['monitor'] == 'val_loss':
stop = stop_criteria(epoch_task_results_dict['total_loss'],te_model)
elif exp_cfg['stop_strategy'] == 'epoch_stop':
stop_criteria(epoch_task_results_dict['total_loss'],te_model)
stop = False
if stop == True:
best_model = stop_criteria.load_best_checkpoint(te_model)
return save_stats,best_model
if exp_cfg['stop_strategy'] == 'early_stop':
best_model = stop_criteria.load_best_checkpoint(te_model)
else:
best_model = te_model
return save_stats,best_model
def val_or_test(exp_cfg, data_cfg, all_te_models, data_loader, lEncs, save_stats, split='val'):
desc = 'Validation' if split == 'val' else 'Test'
all_task_metrics = init_all_task_metrics_val_or_test(all_te_models,data_cfg)
total_loss_metric = torchmetrics.aggregation.MeanMetric()
params = data_cfg.get('params',{})
max_seq_len = data_cfg['max_seq_len']
if split == 'test':
all_report_data = {}
with torch.no_grad():
with tqdm(data_loader,desc=desc) as tbar4:
for batch_idx, raw_batch in enumerate(tbar4):
bs = len(raw_batch)
task_results_dict = {}
for task, te_models in all_te_models.items():
task_metrics = all_task_metrics[task]
te_model = te_models[0]
if params.get('cc', False):
inputs, labels = collate_fn_cdc(raw_batch, te_model.tokenizer,max_seq_len,lEncs)
else:
inputs, labels = collate_fn_dc_sf_di(raw_batch, te_model.tokenizer,max_seq_len,lEncs)
labels = labels[task]
# with torch.no_grad(): # the last linear layer should have grad
t_before_classifier, t_logits = te_model(inputs)
if task in ('sf','pos'):
t_before_classifier, t_logits = merge_logits_for_sf(t_before_classifier, t_logits, inputs)
out_for_record = t_logits.detach().cpu()
labels_for_record = labels.cpu()
if params.get('cc', False):
preds = nn.functional.sigmoid(out_for_record)
preds = torch.where(preds>0.5,1,0)
mif1 = task_metrics['mif1'](preds, labels_for_record)
loss = nn.functional.binary_cross_entropy_with_logits(t_logits, labels.float(), weight=None, size_average=None,reduce=None, reduction='mean')
loss_value = loss.detach().item()
metric_resutls = {'mif1':mif1,'bce':loss_value}
else:
acc = task_metrics['acc'](out_for_record, labels_for_record)
f1 = task_metrics['f1'](out_for_record, labels_for_record)
mif1 = task_metrics['mif1'](out_for_record, labels_for_record)
# compute loss
loss = F.cross_entropy(t_logits, labels)
loss_value = loss.detach().item()
task_metrics['ce'].update(torch.tensor([loss_value]*len(t_logits)))
metric_resutls = {'acc':acc,'f1':f1,'ce':loss_value,'total_loss':loss_value,'mif1':mif1}
task_results_dict[task] = metric_resutls
if split == 'test':
if task not in all_report_data:
all_report_data[task] = {'preds':[],'targets':[]}
all_report_data[task]['preds'].append(out_for_record)
all_report_data[task]['targets'].append(labels_for_record)
task_results_dict['total_loss'] = loss_value
break
save_stats[split]['batch'].append(task_results_dict)
test_batch_log = make_log(task_results_dict)
# tbar4.set_description(test_batch_log)
epoch_task_results_dict = metrics_compute_epoch(all_task_metrics)
if params.get('cc', False):
epoch_task_results_dict['total_loss'] = task_results_dict[task]['bce']
else:
epoch_task_results_dict['total_loss'] = task_results_dict[task]['ce']
# epoch_task_results_dict['total_loss'] = epoch_task_results_dict[task]['ce']
# generate classification report
# print("report_data['targets'] ",torch.cat(report_data['preds'],dim=0).shape)
if split == 'test':
for task, report_data in all_report_data.items():
if task == 'cdc':
all_preds = nn.functional.sigmoid(out_for_record).tolist()
all_targets = torch.cat(report_data['targets'],dim=0).tolist()
else:
all_preds = torch.argmax(torch.cat(report_data['preds'],dim=0),dim=1).tolist()
all_targets = torch.cat(report_data['targets'],dim=0).tolist()
class_names = list(lEncs[task].classes_)
report = classification_report(all_targets, all_preds, labels=lEncs[task].transform(class_names), target_names=class_names)
logger.info(f"{task} Task Report")
logger.info(report)
if task in ('sf'):
all_preds = lEncs[task].inverse_transform(all_preds).tolist()
all_targets = lEncs[task].inverse_transform(all_targets).tolist()
report = seqeval_classification_report([all_targets], [all_preds])
logger.info("slot based Report")
logger.info(report)
f1 = seqval_f1_score([all_targets], [all_preds], average='macro')
logger.info("Seqval Macro f1 {}".format(f1))
epoch_task_results_dict[task]['Seqval Macro f1'] = f1
save_stats[split]['epoch'].append(epoch_task_results_dict)
val_test_epoch_log = make_log(epoch_task_results_dict)
return val_test_epoch_log, epoch_task_results_dict
def current_exp_count(exp_result_dir,ori_exp_name):
'''
Experiment count starts from 0
'''
all_exps = os.listdir(exp_result_dir)
max_count = -1
for exp_floder_name in all_exps:
exp_name,str_cound_id = exp_floder_name.rsplit("_",1)
if exp_name != ori_exp_name:
continue
count_id = int(str_cound_id)
if count_id > max_count:
max_count = count_id
count = max_count + 1
return count
def calculate_test_avg_std(save_stats):
all_task_test_epoch_results = save_stats['test']['epoch']
tmp = {}
for all_task_test_results in all_task_test_epoch_results:
for task,test_results in all_task_test_results.items():
# print("task,test_results ",task,test_results)
if task not in tmp:
tmp[task] = {}
# print("result ",result)
if task == 'total_loss':
tmp[task][len(tmp[task])] = test_results
else:
for k,v in test_results.items():
if k not in tmp:
tmp[task][k] = [v]
else:
tmp[task][k].append(v)
ret_str = ''
for task, task_stat in tmp.items():
logger.info(f'Task: {task} ')
ret_str += f'Task: {task} '
if task == 'total_loss':
values = list(task_stat.values())
str1 = 'key: {}, mean: {}, std: {} |'.format(task,np.mean(values),np.std(values))
ret_str += str1
str2 = 'all values: {}'.format(values)
logger.info(str1)
logger.info(str2)
else:
for k,v in task_stat.items():
str1 = 'key: {}, mean: {}, std: {} |'.format(k,np.mean(v),np.std(v))
ret_str += str1
str2 = 'all values: {}'.format(v)
logger.info(str1)
logger.info(str2)
return ret_str[:-1]
def get_label_encoders(all_slots_list, all_states_list, all_domains_list, all_postags_list):
all_slots = sorted(set([label for for_one_data in all_slots_list for label in for_one_data]))
all_states = sorted(set([label for for_one_data in all_states_list for label in for_one_data]))
all_domains = sorted(set([label for for_one_data in all_domains_list for label in for_one_data]))
all_postags = sorted(set([label for for_one_data in all_postags_list for label in for_one_data]))
logger.info('''Merged labels of all of the data: \n len all_slots: {} \n {} \n len all_states: {} \n {}
\n len all_domains: {} \n {} len all_postags: {} \n {}'''.format(len(all_slots),all_slots,\
len(all_states),all_states, len(all_domains), all_domains, len(all_postags), all_postags))
lEnc_slot = LabelEncoder()
lEnc_intent = LabelEncoder()
lEnc_domain = LabelEncoder()
lEnc_pos = LabelEncoder()
lEnc_conv_domain = MultiLabelBinarizer()
lEnc_slot.fit(all_slots)
lEnc_intent.fit(all_states)
lEnc_domain.fit(all_domains)
lEnc_pos.fit(all_postags)
# print("all_domains ",all_domains)
lEnc_conv_domain.fit([all_domains])
return lEnc_slot,lEnc_intent,lEnc_domain,lEnc_pos,lEnc_conv_domain
def get_all_labels_of_one_dataset(train, val, test):
all_slots = []
all_postags = []
for xs in train.slot_value_pairs + val.slot_value_pairs + test.slot_value_pairs:
all_slots += xs
for xs in train.pos_tags + val.pos_tags + test.pos_tags:
all_postags += xs
all_slots = sorted(set(all_slots))
all_states = sorted(set(train.states + val.states + test.states))
all_domains = sorted(set(train.domains + val.domains + test.domains))
all_postags = sorted(set(all_postags))
logger.info("len all_slots: {} \n {} \n len all_states: {} \n {} \n len all_domains: {} \n {} \n all_postags: {} \n {}"\
.format(len(all_slots),all_slots,len(all_states),all_states, len(all_domains), all_domains, len(all_postags),all_postags))
return all_slots, all_states, all_domains, all_postags
def get_fintuned_data_loader_and_lenc(data_cfg, exp_cfg):
# data
data_names = data_cfg['names']
train_set_list = []
val_set_list = []
test_set_list = []
all_slots_list = []
all_states_list = []
all_domains_list = []
all_postags_list = []
params = data_cfg.get('params',{})
for name in data_names:
train_set = getattr(dataset,name)(split='train',**params)
val_set = getattr(dataset,name)(split='val',**params)
test_set = getattr(dataset,name)(split='test',**params)
train_set_list.append(train_set)
val_set_list.append(val_set)
test_set_list.append(test_set)
logger.info("In {} Data, labels of all tasks are: ".format(name))
all_slots, all_states, all_domains, all_postags = get_all_labels_of_one_dataset(train_set, val_set, test_set)
all_slots_list.append(all_slots)
all_states_list.append(all_states)
all_domains_list.append(all_domains)
all_postags_list.append(all_postags)
save_label_file = 'results/teachers/{}_labels.pt'.format('_'.join(data_names))
if not os.path.exists(save_label_file):
# save the labels for later teaching student
torch.save(dict(all_slots_list=all_slots_list, all_states_list=all_states_list, all_domains_list=all_domains_list,all_postags_list=all_postags_list),save_label_file)
lEnc_slot,lEnc_intent,lEnc_domain, lEnc_pos, lEnc_conv_domain = get_label_encoders(all_slots_list, all_states_list, \
all_domains_list, all_postags_list)
# print("lEnc_conv_domain ",lEnc_conv_domain,lEnc_conv_domain.classes_)
lEncs = {'sf':lEnc_slot,'id':lEnc_intent,'dc':lEnc_domain,'pos':lEnc_pos,'cdc':lEnc_conv_domain}
train_set = ConcatDataset(train_set_list)
val_set = ConcatDataset(val_set_list)
test_set = ConcatDataset(test_set_list)
collate_fn = collate_fn_default_cc if params.get('cc',False) else collate_fn_default
train_loader = DataLoader(train_set, batch_size=exp_cfg['batch_size'], shuffle=True, collate_fn=collate_fn)
val_loader = DataLoader(val_set, batch_size=exp_cfg['batch_size'], shuffle=True, collate_fn=collate_fn)
test_loader = DataLoader(test_set, batch_size=exp_cfg['batch_size'], shuffle=False, collate_fn=collate_fn)
return lEncs, train_loader, val_loader, test_loader
def run_one_exp(config,args,test_params = None, times = 1):
data_cfg = config['DATA']
teacher_cfg = config['TEACHERS']
# student_cfg = config['STUDENT']
exp_cfg = config['EXPERIMENT']
global g_exp_config
g_exp_config = exp_cfg
retain_ckp = config.get('retain_ckp', True)
ori_exp_name = config.get('name',"default_name")
stop_strategy = exp_cfg.get('stop_strategy','early_stop')
exp_result_dir = exp_cfg.get('save_path',"results/experiments/")
if not args.test_only:
if os.path.exists(exp_result_dir):
current_time = current_exp_count(exp_result_dir,ori_exp_name)
else:
current_time = 0
if args.resume is not None: # resume from last experiment
current_time -= 1
time_exp_name = '{}_{}'.format(ori_exp_name,current_time)
else:
time_exp_name, ckpt_name = args.test_ckpt.split('/')
exp_root_path = os.path.join(exp_result_dir,time_exp_name)
# logger.remove(handler_id=None)
if args.test_only == True:
logger.add(os.path.join(exp_root_path,"test_out.log"))
else:
logger.add(os.path.join(exp_root_path,"out.log"))
logger.info("torch.cuda.device_count: {}".format(torch.cuda.device_count()))
logger.info('config: ' + json.dumps(config, indent=4))
if test_params is not None:
logger.info('Test params: '+str(test_params))
with tqdm(range(times),desc='EXP Times Loop') as tbar1:
for i in tbar1:
cur_seed = config['seed']*i+1
logger.info('Start experiment: {}, seed: {}, time: {}'.format(config['name'],cur_seed,i))
seed_everything(cur_seed,True)
# teacher model, grouped by task
teacher_models = {}
# name='bert-base-uncased',head={type='dc',nclasses=48},freeze=false}
for te_cfg_name in teacher_cfg['teacher_list']:
te_params = teacher_cfg[te_cfg_name]
task = te_params['head']['type']
if task not in teacher_models:
teacher_models[task] = []
model_list = teacher_models[task]
te_type = te_params.pop('type')
te_model = getattr(models, te_type)(**te_params)
te_model.cuda()
te_model.eval() # eval mode
model_list.append(te_model)
# student model
st_model = None
# data
# train_set = getattr(dataset, data_cfg['name'])(split='train')
# val_set = getattr(dataset, data_cfg['name'])(split='val')
# test_set = getattr(dataset, data_cfg['name'])(split='test')
# lEnc_slot,lEnc_intent,lEnc_domain = get_label_encoders(train_set, val_set, test_set)
# lEncs = {'sf':lEnc_slot,'id':lEnc_intent,'dc':lEnc_domain}
# train_loader = DataLoader(train_set, batch_size=exp_cfg['batch_size'], shuffle=True, collate_fn=collate_fn_default)
# val_loader = DataLoader(val_set, batch_size=exp_cfg['batch_size'], shuffle=True, collate_fn=collate_fn_default)
# test_loader = DataLoader(test_set, batch_size=exp_cfg['batch_size'], shuffle=False, collate_fn=collate_fn_default)
lEncs, train_loader, val_loader, test_loader = get_fintuned_data_loader_and_lenc(data_cfg, exp_cfg)
save_stats_path = os.path.join(exp_root_path,"stats_record.pt")
if not args.test_only:
save_stats,best_st_model = train(exp_cfg,data_cfg,teacher_models,train_loader,lEncs,exp_root_path,val_loader)
else:
st_model.load_state_dict(torch.load(os.path.join(exp_root_path,ckpt_name)))
best_st_model = st_model
if os.path.exists(save_stats_path):
save_stats = torch.load(save_stats_path)
else:
save_stats = {'train':{'batch':[],'epoch':[]},'val':{'batch':[],'epoch':[]},'test':{'batch':[],'epoch':[]}}
teacher_models[task][0] = best_st_model
test_epoch_log, epoch_task_results_dict = val_or_test(exp_cfg, data_cfg, teacher_models, \
test_loader, lEncs, save_stats, split='test')
torch.save(save_stats,os.path.join(exp_root_path,"stats_record.pt"))
logger.info("Test: "+test_epoch_log)
time_exp_log = calculate_test_avg_std(save_stats)
tbar1.set_description(time_exp_log)
def prepare_envs():
if not os.path.exists('results/'):
os.mkdir('results/')
if not os.path.exists('results/teachers'):
os.mkdir('results/teachers')
# if not os.path.exists('results/cache/'):
# os.mkdir('results/cache/')
# if not os.path.exists('results/analysis/'):
# os.mkdir('results/analysis/')
# if not os.path.exists('results/cache/key_phrase_split/'):
# os.mkdir('results/cache/key_phrase_split/')
# if not os.path.exists('results/cache/tokenized_results/'):
# os.mkdir('results/cache/tokenized_results/')
# if not os.path.exists('results/cache/vocabs/'):
# os.mkdir('results/cache/vocabs/')
if not os.path.exists('results/experiments/'):
os.mkdir('results/experiments/')
if __name__=="__main__":
prepare_envs()
# Training settings
parser = argparse.ArgumentParser(description='PyTorch multi_teacher_avg_distill')
parser.add_argument('--config', default='ERROR')
parser.add_argument('--start_version', type=int, default=0)
parser.add_argument('--clean', action='store_true')
parser.add_argument('--resume', default=None)
parser.add_argument('--run_times',type=int, default=1)
parser.add_argument('--test_only', action='store_true')
parser.add_argument('--test_ckpt', default=None)
args = parser.parse_args()
config_file = args.config
run_times = args.run_times
config = get_params(config_file)
exp_result_dir = config['EXPERIMENT'].get('save_path',"results/experiments/")
if os.path.exists(exp_result_dir) and args.clean == True:
shutil.rmtree(exp_result_dir)
if 'PARAMSGRID' in config:
print("This is a hyper paremeters grid search experiment: {}, seed: {}!!".format(config['name'],config['seed']))
params_grid = list(ParameterGrid(config['PARAMSGRID']))
start_version = args.start_version # the version increases from 0
print(start_version, len(params_grid))
for i in range(start_version, len(params_grid)):
params = params_grid[i]
for combination_name, value in params.items():
all_names = combination_name.split('_-')
param_name = all_names[-1]
sub_config = config
for p_name in all_names[:-1]:
if p_name in sub_config:
sub_config = sub_config[p_name]
else:
print('ERROR config of ',combination_name)
sys.exit(0)
sub_config[param_name] = value
print("---------------------")
print('Total param groups: {}, current: {}'.format(len(params_grid), i+1))
# when searchning the parameters, run_times should be 1
# with torch.autograd.set_detect_anomaly(True):
run_one_exp(config,args,params,times=1)
elif 'PARAMSLIST' in config:
for combination_name, value_list in config['PARAMSLIST'].items():
all_names = combination_name.split('_-')
param_name = all_names[-1]
sub_config = config
for p_name in all_names[:-1]:
if p_name in sub_config:
sub_config = sub_config[p_name]
else:
print('ERROR config of ',combination_name)
sys.exit(0)
for i in range(len(value_list)):
sub_config[param_name] = value_list[i]
print("---------------------")
print('current param groups: {}, current: {}'.format(len(value_list), i+1))
# when searchning the parameters, run_times should be 1
run_one_exp(config,args,value_list[i],times=1)
else:
run_one_exp(config,args,None,times=run_times)