-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsweep.py
177 lines (139 loc) · 5.41 KB
/
sweep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import wandb
import argparse
import yaml
import shutil
from subprocess import call
import os
wandb.login()
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--sweep_id",
type=str,
default=None,
help="Wandb sweep id for decentralized sweeping. If not provided, a new sweep will be created.",
)
parser.add_argument(
"--gpu",
type=list,
default=None,
help="List of CUDA device ids to use for training. If not provided, all available GPUs will be used.",
)
parser.add_argument(
"--sweep_config",
type=str,
default="configs/sweep_configs/qlora_sweep.yaml",
help="Path to sweep config yaml file. Ignored if sweep_id is provided.",
)
parser.add_argument(
"--project",
type=str,
default="AblateIt-Sweeps",
help="Wandb project name. Do not change.",
)
parser.add_argument(
"--default_training_args",
type=str,
default="configs/default_training_configs/default_qlora.yaml",
help="Path to default training args yaml file. Ignored if sweep_id is provided.",
)
parser.add_argument(
"--entity",
type=str,
default="ablateit",
help="Wandb entity name. Do not change unless testing.",
)
parser.add_argument(
"--push_to_hub",
type=bool,
default=True,
help="Whether to push the models to the hub during training.",
)
parser.add_argument(
"--max_num_runs",
type=int,
default=99999,
help="Maximum number of runs for the agent to start.",
)
# parser.add_argument('--dataset', type=str, default='LDJnr/Puffin',
# help='Dataset to use for training. Currently only supports Puffin.')
return parser.parse_args()
DATASET_SIZES = {"Puffin": 3000}
def create_name(config_dict):
short = {
"gradient_accumulation_steps": "graccsteps",
"learning_rate": "lr",
"lora_r": "lora_r",
"lora_dropout": "drop",
}
name = ""
for hyperparam, value in config_dict.items():
name += short.get(hyperparam, hyperparam) + str(value).replace(".", "_") + "-"
return name[:-1]
def sweep():
args = get_args()
sweep_id = args.sweep_id
if not sweep_id:
sweep_config = yaml.safe_load(open(args.sweep_config))["wandb_args"]
sweep_id = wandb.sweep(sweep_config, project=args.project)
print(sweep_id)
with open("sweep_id.txt", "w") as file:
file.write(sweep_id)
def run_sweep():
wandb.init(entity=args.entity)
config = dict(wandb.config)
warmup_factor = (
config.pop("warmpup_steps_factor_of_epoch")
if "warmpup_steps_factor_of_epoch" in config
else None
)
finetune_type = config.pop("ft_type")
sweep_name = config.pop("sweep_name")
run_name = args.project + "-" + sweep_name + "-" + finetune_type + "-" + create_name(config)
wandb.run.name = run_name
with open(args.default_training_args, "r") as file:
run_config = yaml.safe_load(file)
for hyperparameter, value in config.items():
run_config[hyperparameter] = value
epoch_train_steps = int((DATASET_SIZES["Puffin"] *
(1 - run_config["val_set_size"])) / (run_config["gradient_accumulation_steps"] * run_config["micro_batch_size"]))
if warmup_factor:
run_config["warmup_steps"] = int(epoch_train_steps * warmup_factor)
if run_config["eval_strategy"] == "epoch" and type(run_config["eval_steps"]) == float:
run_config["eval_steps"] = int(epoch_train_steps * run_config["eval_steps"])
run_config["eval_strategy"] = "steps"
if run_config["save_strategy"] == "epoch" and type(run_config["save_steps"]) == float:
run_config["save_steps"] = int(epoch_train_steps * run_config["save_steps"])
run_config["save_strategy"] = "steps"
if args.push_to_hub:
run_config["hub_model_id"] = "AblateIt/" + run_name
run_config["push_to_hub"] = True
run_config["hub_strategy"] = "all_checkpoints"
print(run_config["hub_model_id"])
run_config["wandb_project"] = args.project
run_config["wandb_entity"] = args.entity
run_config["wandb_run_name"] = run_name
run_config["output_dir"] = run_config["output_dir"] + "/" + run_name + "/"
run_config_path = run_config["output_dir"] + "config.yaml"
if not os.path.exists(run_config["output_dir"]):
os.makedirs(run_config["output_dir"])
with open(run_config_path, "w") as file:
yaml.dump(run_config, file)
print(run_config)
# Run the training command with the temporary config file
cuda_device_declaration = (
"export CUDA_VISIBLE_DEVICES=" + ",".join([str(x) for x in args.gpu]) + "; "
if args.gpu
else ""
)
cmd = (
cuda_device_declaration
+ f"accelerate launch axolotl/scripts/finetune.py {run_config_path} --main_process_port 0"
)
print(cmd)
call(cmd, shell=True)
if args.sweep_id is not None:
# Run the sweep
wandb.agent(sweep_id, run_sweep, project=args.project, entity=args.entity, count=args.max_num_runs)
if __name__ == "__main__":
sweep()