-
Notifications
You must be signed in to change notification settings - Fork 268
/
Copy pathtrain_crd.py
309 lines (252 loc) · 10.3 KB
/
train_crd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import os
import sys
import time
import logging
import argparse
import numpy as np
from itertools import chain
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import torchvision.datasets as dst
from utils import AverageMeter, accuracy, transform_time
from utils import load_pretrained_model, save_checkpoint
from utils import create_exp_dir, count_parameters_in_MB
from dataset import CIFAR10IdxSample, CIFAR100IdxSample
from network import define_tsnet
from kd_losses import CRD
parser = argparse.ArgumentParser(description='contrastive representation distillation')
# various path
parser.add_argument('--save_root', type=str, default='./results', help='models and logs are saved here')
parser.add_argument('--img_root', type=str, default='./datasets', help='path name of image dataset')
parser.add_argument('--s_init', type=str, required=True, help='initial parameters of student model')
parser.add_argument('--t_model', type=str, required=True, help='path name of teacher model')
# training hyper parameters
parser.add_argument('--print_freq', type=int, default=50, help='frequency of showing training results on console')
parser.add_argument('--epochs', type=int, default=200, help='number of total epochs to run')
parser.add_argument('--batch_size', type=int, default=128, help='The size of batch')
parser.add_argument('--lr', type=float, default=0.1, help='initial learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay')
parser.add_argument('--num_class', type=int, default=10, help='number of classes')
parser.add_argument('--cuda', type=int, default=1)
# others
parser.add_argument('--seed', type=int, default=2, help='random seed')
parser.add_argument('--note', type=str, default='try', help='note for this run')
# net and dataset choosen
parser.add_argument('--data_name', type=str, required=True, help='name of dataset') # cifar10/cifar100
parser.add_argument('--t_name', type=str, required=True, help='name of teacher') # resnet20/resnet110
parser.add_argument('--s_name', type=str, required=True, help='name of student') # resnet20/resnet110
# hyperparameter
parser.add_argument('--lambda_kd', type=float, default=0.2, help='trade-off parameter for kd loss')
parser.add_argument('--feat_dim', type=int, default=128, help='dimension of the projection space')
parser.add_argument('--nce_n', type=int, default=16384, help='number of negatives paired with each positive')
parser.add_argument('--nce_t', type=float, default=0.1, help='temperature parameter')
parser.add_argument('--nce_mom', type=float, default=0.5, help='momentum for non-parametric updates')
parser.add_argument('--mode', type=str, default='exact', choices=['exact', 'relax'])
args, unparsed = parser.parse_known_args()
args.save_root = os.path.join(args.save_root, args.note)
create_exp_dir(args.save_root)
log_format = '%(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format)
fh = logging.FileHandler(os.path.join(args.save_root, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
def main():
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
cudnn.enabled = True
cudnn.benchmark = True
logging.info("args = %s", args)
logging.info("unparsed_args = %s", unparsed)
logging.info('----------- Network Initialization --------------')
snet = define_tsnet(name=args.s_name, num_class=args.num_class, cuda=args.cuda)
checkpoint = torch.load(args.s_init)
load_pretrained_model(snet, checkpoint['net'])
logging.info('Student: %s', snet)
logging.info('Student param size = %fMB', count_parameters_in_MB(snet))
tnet = define_tsnet(name=args.t_name, num_class=args.num_class, cuda=args.cuda)
checkpoint = torch.load(args.t_model)
load_pretrained_model(tnet, checkpoint['net'])
tnet.eval()
for param in tnet.parameters():
param.requires_grad = False
logging.info('Teacher: %s', tnet)
logging.info('Teacher param size = %fMB', count_parameters_in_MB(tnet))
logging.info('-----------------------------------------------')
# define transforms
if args.data_name == 'cifar10':
train_dataset = CIFAR10IdxSample
test_dataset = dst.CIFAR10
mean = (0.4914, 0.4822, 0.4465)
std = (0.2470, 0.2435, 0.2616)
elif args.data_name == 'cifar100':
train_dataset = CIFAR100IdxSample
test_dataset = dst.CIFAR100
mean = (0.5071, 0.4865, 0.4409)
std = (0.2673, 0.2564, 0.2762)
else:
raise Exception('Invalid dataset name...')
train_transform = transforms.Compose([
transforms.Pad(4, padding_mode='reflect'),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=mean,std=std)
])
test_transform = transforms.Compose([
transforms.CenterCrop(32),
transforms.ToTensor(),
transforms.Normalize(mean=mean,std=std)
])
# define data loader
train_loader = torch.utils.data.DataLoader(
train_dataset(root = args.img_root,
transform = train_transform,
train = True,
download = True,
n = args.nce_n,
mode = args.mode),
batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True)
test_loader = torch.utils.data.DataLoader(
test_dataset(root = args.img_root,
transform = test_transform,
train = False,
download = True),
batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True)
# define loss functions
s_dim = snet.module.get_channel_num()[-2]
t_dim = tnet.module.get_channel_num()[-2]
if args.cuda:
criterionCls = torch.nn.CrossEntropyLoss().cuda()
criterionKD = CRD(s_dim, t_dim, args.feat_dim, args.nce_n,
args.nce_t, args.nce_mom, len(train_loader.dataset)).cuda()
else:
criterionCls = torch.nn.CrossEntropyLoss()
criterionKD = CRD(s_dim, t_dim, args.feat_dim, args.nce_n,
args.nce_t, args.nce_mom, len(train_loader.dataset))
# initialize optimizer
optimizer = torch.optim.SGD(chain(snet.parameters(),
criterionKD.embed_t.parameters(),
criterionKD.embed_s.parameters()),
lr = args.lr,
momentum = args.momentum,
weight_decay = args.weight_decay,
nesterov = True)
# warp nets and criterions for train and test
nets = {'snet':snet, 'tnet':tnet}
criterions = {'criterionCls':criterionCls, 'criterionKD':criterionKD}
best_top1 = 0
best_top5 = 0
for epoch in range(1, args.epochs+1):
adjust_lr(optimizer, epoch)
# train one epoch
epoch_start_time = time.time()
train(train_loader, nets, optimizer, criterions, epoch)
# evaluate on testing set
logging.info('Testing the models......')
test_top1, test_top5 = test(test_loader, nets, criterions, epoch)
epoch_duration = time.time() - epoch_start_time
logging.info('Epoch time: {}s'.format(int(epoch_duration)))
# save model
is_best = False
if test_top1 > best_top1:
best_top1 = test_top1
best_top5 = test_top5
is_best = True
logging.info('Saving models......')
save_checkpoint({
'epoch': epoch,
'snet': snet.state_dict(),
'tnet': tnet.state_dict(),
'prec@1': test_top1,
'prec@5': test_top5,
}, is_best, args.save_root)
def train(train_loader, nets, optimizer, criterions, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
cls_losses = AverageMeter()
kd_losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
snet = nets['snet']
tnet = nets['tnet']
criterionCls = criterions['criterionCls']
criterionKD = criterions['criterionKD']
snet.train()
criterionKD.embed_s.train()
criterionKD.embed_t.train()
end = time.time()
for i, (img, target, idx, sample_idx) in enumerate(train_loader, start=1):
data_time.update(time.time() - end)
if args.cuda:
img = img.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
idx = idx.cuda(non_blocking=True)
sample_idx = sample_idx.cuda(non_blocking=True)
_, _, _, _, feat_s, out_s = snet(img)
_, _, _, _, feat_t, out_t = tnet(img)
cls_loss = criterionCls(out_s, target)
kd_loss = criterionKD(feat_s, feat_t, idx, sample_idx) * args.lambda_kd
loss = cls_loss + kd_loss
prec1, prec5 = accuracy(out_s, target, topk=(1,5))
cls_losses.update(cls_loss.item(), img.size(0))
kd_losses.update(kd_loss.item(), img.size(0))
top1.update(prec1.item(), img.size(0))
top5.update(prec5.item(), img.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
log_str = ('Epoch[{0}]:[{1:03}/{2:03}] '
'Time:{batch_time.val:.4f} '
'Data:{data_time.val:.4f} '
'Cls:{cls_losses.val:.4f}({cls_losses.avg:.4f}) '
'KD:{kd_losses.val:.4f}({kd_losses.avg:.4f}) '
'prec@1:{top1.val:.2f}({top1.avg:.2f}) '
'prec@5:{top5.val:.2f}({top5.avg:.2f})'.format(
epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time,
cls_losses=cls_losses, kd_losses=kd_losses, top1=top1, top5=top5))
logging.info(log_str)
def test(test_loader, nets, criterions, epoch):
cls_losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
snet = nets['snet']
criterionCls = criterions['criterionCls']
snet.eval()
end = time.time()
for i, (img, target) in enumerate(test_loader, start=1):
if args.cuda:
img = img.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
with torch.no_grad():
_, _, _, _, _, out_s = snet(img)
cls_loss = criterionCls(out_s, target)
prec1, prec5 = accuracy(out_s, target, topk=(1,5))
cls_losses.update(cls_loss.item(), img.size(0))
top1.update(prec1.item(), img.size(0))
top5.update(prec5.item(), img.size(0))
f_l = [cls_losses.avg, top1.avg, top5.avg]
logging.info('Cls: {:.4f}, Prec@1: {:.2f}, Prec@5: {:.2f}'.format(*f_l))
return top1.avg, top5.avg
def adjust_lr(optimizer, epoch):
scale = 0.1
lr_list = [args.lr] * 100
lr_list += [args.lr*scale] * 50
lr_list += [args.lr*scale*scale] * 50
lr = lr_list[epoch-1]
logging.info('Epoch: {} lr: {:.3f}'.format(epoch, lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
main()