-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_light.py
206 lines (156 loc) · 6.46 KB
/
trainer_light.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import argparse
import logging
import torch
import time
import numpy as np
from utils import utils as uu
logger = logging.getLogger(__name__)
class TrainerLight(object):
def __init__(self, cfg: argparse.Namespace, task, model, criterion, quantizer):
self.cfg = cfg
self.task = task
self.model = model
self.criterion = criterion
self.quantizer = quantizer
self.batch_size = cfg.batch_size
self.diagnostics = dict()
self.start_time = time.time()
self.separator = "\t"
return
def _build_optimizer(self):
self.optimizer = torch.optim.AdamW(
self.model.parameters(),
lr=self.cfg.learning_rate,
weight_decay=self.cfg.weight_decay,
)
warmup_steps = self.cfg.warmup_steps
self.lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
self.optimizer,
lambda steps: min((steps + 1) / warmup_steps, 1)
)
return
def zero_grad(self):
self.optimizer.zero_grad()
def begin_epoch(self, epoch):
"""Called at the beginning of each epoch."""
logger.info("begin training epoch {}".format(epoch))
self.lr_step_begin_epoch(epoch)
if self.quantizer is not None:
self.quantizer.begin_epoch(epoch)
# task specific setup per epoch
self.task.begin_epoch(epoch, self.model)
def _prepare_sample(self, sample):
return sample, False
def train_step(self, samples, raise_oom=False):
self.model.train()
#self.criterion.train()
self.zero_grad()
scale_way = 'normalize'
if self.cfg.model == 'ofa':
scale_way = 'standardize'
sample = self.task.dataset.get_batch(self.batch_size, scale_way=scale_way)
sample, is_dummy_batch = self._prepare_sample(sample)
loss = self.task.train_step(sample, self.model, self.criterion, self.optimizer)
return loss
def valid_step(self, sample, raise_oom=False):
"""Do forward pass in evaluation mode."""
self.model.eval()
outputs = self.task.valid_step()
return outputs
def train_iteration(self, num_steps, iter_num=0, print_logs=False):
train_losses = []
logs = dict()
train_start = time.time()
self.model.train()
for _ in range(num_steps):
train_loss = self.train_step(None, False)
train_losses.append(train_loss)
if self.lr_scheduler is not None:
self.lr_scheduler.step()
#with torch.no_grad():
# self.diagnostics['training/action_error'] = torch.mean((action_preds-action_target)**2).detach().cpu().item()
logs['time/training'] = time.time() - train_start
#print(train_losses)
#print(exit(3))
eval_start = time.time()
if self.task.env_name not in ['Walker', 'Unimal']:
self.model.eval()
outputs_list = self.valid_step(None, raise_oom=False)
for outputs in outputs_list:
for k, v in outputs.items():
logs[f'evaluation/{k}'] = v
logs['time/total'] = time.time() - self.start_time
logs['time/evaluation'] = time.time() - eval_start
logs['training/train_loss_mean'] = np.mean(train_losses)
logs['training/train_loss_std'] = np.std(train_losses)
for k in self.diagnostics:
logs[k] = self.diagnostics[k]
if print_logs:
print('=' * 80)
print(f'Iteration {iter_num}')
for k, v in logs.items():
print(f'{k}: {v}')
self.save_model(iter_num, file_postfix='-' + self.cfg.dataset)
return logs
def eval(self, print_logs=False):
self.model.eval()
logs = dict()
outputs_list = self.valid_step(None, raise_oom=False)
for outputs in outputs_list:
for k, v in outputs.items():
logs[f'evaluation/{k}'] = v
logs['time/total'] = time.time() - self.start_time
for k in self.diagnostics:
logs[k] = self.diagnostics[k]
if print_logs:
print('=' * 80)
for k, v in logs.items():
print(f'{k}: {v}')
return outputs_list
def sample_and_save(self, path=None):
window_samples = self.task.dataset.convert_to_window_sample()
import random
random.shuffle(window_samples)
print('Start to write %i data samples.' % len(window_samples))
if not path:
#path = './output'
#path = os.path.join(path, self.task.name)
#path = os.path.join(path, self.task.env_name)
path = self.task.dataset_dir
os.makedirs(path, exist_ok=True)
save_data_name = self.task.dataset.data_name + '.tsv'
save_data_path = os.path.join(path, save_data_name)
print('Saving to %s.' % save_data_path)
self.save_data_file = open(save_data_path, 'w')
for i, sample in enumerate(window_samples):
line_data = [sample['s'], sample['a'], sample['a_prev'], sample['r_prev'], sample['timemasks'], sample['timesteps']]
line = uu.get_write_line(sample['uniq_id'], sample['env'], sample['t'], line_data, self.separator)
self.save_data_file.write(line)
if i > 0 and i % 1000 == 0:
print('%i samples written.' % i)
self.save_data_file.close()
return
def lr_step_begin_epoch(self, epoch):
"""Adjust the learning rate at the beginning of the epoch."""
self.lr_scheduler.step_begin_epoch(epoch)
# prefer updating the LR based on the number of steps
return self.lr_step_update()
def save_model(self, iter_num=-1, path=None, file_postfix=None):
model_file_name = 'last_checkpoint'
if file_postfix is not None:
model_file_name += file_postfix
model_file_name += ".pt"
if not path:
path = './output'
path = os.path.join(path, self.task.name)
path = os.path.join(path, self.task.env_name)
path = os.path.join(path, self.task.model_type)
os.makedirs(path, exist_ok=True)
path = os.path.join(path, model_file_name)
if isinstance(self.model, torch.nn.DataParallel):
model_to_save = self.model.module
else:
model_to_save = self.model
torch.save({'iter_num': iter_num, 'model_state_dict': model_to_save.state_dict()}, path)
return