-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathenv.py
255 lines (215 loc) · 10.3 KB
/
env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import cv2
import numpy as np
import torch
GYM_ENVS = ['Pendulum-v0', 'MountainCarContinuous-v0', 'Ant-v2', 'HalfCheetah-v2', 'Hopper-v2', 'Humanoid-v2', 'HumanoidStandup-v2', 'InvertedDoublePendulum-v2', 'InvertedPendulum-v2', 'Reacher-v2', 'Swimmer-v2', 'Walker2d-v2']
CONTROL_SUITE_ENVS = ['cartpole-balance', 'cartpole-swingup', 'reacher-easy', 'finger-spin', 'cheetah-run', 'ball_in_cup-catch', 'walker-walk','reacher-hard', 'walker-run', 'humanoid-stand', 'humanoid-walk', 'fish-swim', 'acrobot-swingup']
CONTROL_SUITE_ACTION_REPEATS = {'cartpole': 8, 'reacher': 4, 'finger': 2, 'cheetah': 4, 'ball_in_cup': 6, 'walker': 2, 'humanoid': 2, 'fish': 2, 'acrobot':4}
DONKEY_CAR_ENVS = ["donkey-warehouse-v0", "donkey-generated-roads-v0", "donkey-avc-sparkfun-v0", "donkey-generated-track-v0", "donkey-mountain-track-v0"]
# Preprocesses an observation inplace (from float32 Tensor [0, 255] to [-0.5, 0.5])
def preprocess_observation_(observation, bit_depth):
observation.div_(2 ** (8 - bit_depth)).floor_().div_(2 ** bit_depth).sub_(0.5) # Quantise to given bit depth and centre
observation.add_(torch.rand_like(observation).div_(2 ** bit_depth)) # Dequantise (to approx. match likelihood of PDF of continuous images vs. PMF of discrete images)
# Postprocess an observation for storage (from float32 numpy array [-0.5, 0.5] to uint8 numpy array [0, 255])
def postprocess_observation(observation, bit_depth):
return np.clip(np.floor((observation + 0.5) * 2 ** bit_depth) * 2 ** (8 - bit_depth), 0, 2 ** 8 - 1).astype(np.uint8)
def _images_to_observation(images, bit_depth):
# images = images[40:, :, :]
# images = torch.tensor(cv2.resize(images, (40, 40), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1), dtype=torch.float32) # Resize and put channel first
# preprocess_observation_(images, bit_depth) # Quantise, centre and dequantise inplace
# return images.unsqueeze(dim=0) # Add batch dimension
images = images[40:, :, :]
images = cv2.resize(images, (40, 40))
images = np.dot(images, [0.299, 0.587, 0.114])
obs = torch.tensor(images, dtype=torch.float32).div_(255.).sub_(0.5).unsqueeze(dim=0) # shape [1, 40, 40], range:[-0.5,0.5]
return obs.unsqueeze(dim=0) # add batch dimension
class ControlSuiteEnv():
def __init__(self, env, symbolic, seed, max_episode_length, action_repeat, bit_depth):
from dm_control import suite
from dm_control.suite.wrappers import pixels
domain, task = env.split('-')
self.symbolic = symbolic
self._env = suite.load(domain_name=domain, task_name=task, task_kwargs={'random': seed})
if not symbolic:
self._env = pixels.Wrapper(self._env)
self.max_episode_length = max_episode_length
self.action_repeat = action_repeat
if action_repeat != CONTROL_SUITE_ACTION_REPEATS[domain]:
print('Using action repeat %d; recommended action repeat for domain is %d' % (action_repeat, CONTROL_SUITE_ACTION_REPEATS[domain]))
self.bit_depth = bit_depth
def reset(self):
self.t = 0 # Reset internal timer
state = self._env.reset()
if self.symbolic:
return torch.tensor(np.concatenate([np.asarray([obs]) if isinstance(obs, float) else obs for obs in state.observation.values()], axis=0), dtype=torch.float32).unsqueeze(dim=0)
else:
return _images_to_observation(self._env.physics.render(camera_id=0), self.bit_depth)
def step(self, action):
action = action.detach().numpy()
reward = 0
for k in range(self.action_repeat):
state = self._env.step(action)
reward += state.reward
self.t += 1 # Increment internal timer
done = state.last() or self.t == self.max_episode_length
if done:
break
if self.symbolic:
observation = torch.tensor(np.concatenate([np.asarray([obs]) if isinstance(obs, float) else obs for obs in state.observation.values()], axis=0), dtype=torch.float32).unsqueeze(dim=0)
else:
observation = _images_to_observation(self._env.physics.render(camera_id=0), self.bit_depth)
return observation, reward, done
def render(self):
cv2.imshow('screen', self._env.physics.render(camera_id=0)[:, :, ::-1])
cv2.waitKey(1)
def close(self):
cv2.destroyAllWindows()
self._env.close()
@property
def observation_size(self):
return sum([(1 if len(obs.shape) == 0 else obs.shape[0]) for obs in self._env.observation_spec().values()]) if self.symbolic else (3, 64, 64)
@property
def action_size(self):
return self._env.action_spec().shape[0]
# Sample an action randomly from a uniform distribution over all valid actions
def sample_random_action(self):
spec = self._env.action_spec()
return torch.from_numpy(np.random.uniform(spec.minimum, spec.maximum, spec.shape))
class GymEnv():
def __init__(self, env, symbolic, seed, max_episode_length, action_repeat, bit_depth):
import gym
self.symbolic = symbolic
self._env = gym.make(env)
self._env.seed(seed)
self.max_episode_length = max_episode_length
self.action_repeat = action_repeat
self.bit_depth = bit_depth
def reset(self):
self.t = 0 # Reset internal timer
state = self._env.reset()
if self.symbolic:
return torch.tensor(state, dtype=torch.float32).unsqueeze(dim=0)
else:
return _images_to_observation(self._env.render(mode='rgb_array'), self.bit_depth)
def step(self, action):
action = action.detach().numpy()
reward = 0
for k in range(self.action_repeat):
state, reward_k, done, _ = self._env.step(action)
reward += reward_k
self.t += 1 # Increment internal timer
done = done or self.t == self.max_episode_length
if done:
break
if self.symbolic:
observation = torch.tensor(state, dtype=torch.float32).unsqueeze(dim=0)
else:
observation = _images_to_observation(self._env.render(mode='rgb_array'), self.bit_depth)
return observation, reward, done
def render(self):
self._env.render()
def close(self):
self._env.close()
@property
def observation_size(self):
return self._env.observation_space.shape[0] if self.symbolic else (3, 64, 64)
@property
def action_size(self):
return self._env.action_space.shape[0]
# Sample an action randomly from a uniform distribution over all valid actions
def sample_random_action(self):
return torch.from_numpy(self._env.action_space.sample())
class DonkeyCarEnv():
def __init__(self, env, symbolic, seed, max_episode_length, action_repeat, bit_depth, sim_path, host="127.0.0.1", port=9091):
import gym
import gym_donkeycar
self.symbolic = symbolic
self.donkey_conf = {
"exe_path" : sim_path,
"host" : host,
"port" : port,
"body_style" : "donkey",
"body_rgb" : (128, 128, 128),
"car_name" : "me",
"font_size" : 100,
"racer_name" : "Dreamer",
"country" : "Fi",
"bio" : "Learning to drive w Dreamer",
"max_cte" : 4,
}
self._env = gym.make(env, conf=self.donkey_conf)
self._env.seed(seed)
self.max_episode_length = max_episode_length
self.action_repeat = action_repeat
self.bit_depth = bit_depth
def reset(self):
self.t = 0 # Reset internal timer
# state = self._env.reset()
# if self.symbolic:
# return torch.tensor(state, dtype=torch.float32).unsqueeze(dim=0)
# else:
# return _images_to_observation(self._env.render(mode='rgb_array'), self.bit_depth)
obs = self._env.reset()
return _images_to_observation(obs, self.bit_depth)
def step(self, action):
action = action.detach().numpy()
reward = 0
for k in range(self.action_repeat):
state, reward_k, done, info = self._env.step(action)
reward += reward_k
self.t += 1 # Increment internal timer
# done = done or self.t == self.max_episode_length
if done:
# print("done", info)
break
# if self.symbolic:
# observation = torch.tensor(state, dtype=torch.float32).unsqueeze(dim=0)
# else:
# observation = _images_to_observation(self._env.render(mode='rgb_array'), self.bit_depth)
observation = _images_to_observation(state, self.bit_depth)
# print(observation.shape) # [1,3,64,64]
return observation, reward, done
def render(self):
self._env.render()
def close(self):
self._env.close()
@property
def observation_size(self):
return self._env.observation_space.shape[0] if self.symbolic else (3, 64, 64)
@property
def action_size(self):
return self._env.action_space.shape[0]
# Sample an action randomly from a uniform distribution over all valid actions
def sample_random_action(self):
return torch.from_numpy(self._env.action_space.sample())
def Env(env, symbolic, seed, max_episode_length, action_repeat, bit_depth, sim_path, host, port):
if env in GYM_ENVS:
return GymEnv(env, symbolic, seed, max_episode_length, action_repeat, bit_depth)
elif env in CONTROL_SUITE_ENVS:
return ControlSuiteEnv(env, symbolic, seed, max_episode_length, action_repeat, bit_depth)
elif env in DONKEY_CAR_ENVS:
return DonkeyCarEnv(env, symbolic, seed, max_episode_length, action_repeat, bit_depth, sim_path, host, port)
else:
raise NotImplementedError
# Wrapper for batching environments together
class EnvBatcher():
def __init__(self, env_class, env_args, env_kwargs, n):
self.n = n
self.envs = [env_class(*env_args, **env_kwargs) for _ in range(n)]
self.dones = [True] * n
# Resets every environment and returns observation
def reset(self):
observations = [env.reset() for env in self.envs]
self.dones = [False] * self.n
return torch.cat(observations)
# Steps/resets every environment and returns (observation, reward, done)
def step(self, actions):
done_mask = torch.nonzero(torch.tensor(self.dones), as_tuple=False)[:, 0] # Done mask to blank out observations and zero rewards for previously terminated environments
observations, rewards, dones = zip(*[env.step(action) for env, action in zip(self.envs, actions)])
dones = [d or prev_d for d, prev_d in zip(dones, self.dones)] # Env should remain terminated if previously terminated
self.dones = dones
observations, rewards, dones = torch.cat(observations), torch.tensor(rewards, dtype=torch.float32), torch.tensor(dones, dtype=torch.uint8)
observations[done_mask] = 0
rewards[done_mask] = 0
return observations, rewards, dones
def close(self):
[env.close() for env in self.envs]