Skip to content

Latest commit

 

History

History
313 lines (249 loc) · 12.9 KB

README.md

File metadata and controls

313 lines (249 loc) · 12.9 KB

ALDi logo

Huggingface Space Data arXiv Model on Huggingface

The codebase for the ALDi: Quantifying the Arabic Level of Dialectness of Text paper accepted to EMNLP 2023.

Fine-tuned models on 🤗

Model Link on 🤗
Sentence-ALDi (random seed: 42) https://huggingface.co/AMR-KELEG/Sentence-ALDi
Sentence-ALDi (random seed: 30) https://huggingface.co/AMR-KELEG/Sentence-ALDi-30
Sentence-ALDi (random seed: 50) https://huggingface.co/AMR-KELEG/Sentence-ALDi-50
Token-DI (random seed: 42) https://huggingface.co/AMR-KELEG/ALDi-Token-DI
Token-DI (random seed: 30) https://huggingface.co/AMR-KELEG/ALDi-Token-DI-30
Token-DI (random seed: 50) https://huggingface.co/AMR-KELEG/ALDi-Token-DI-50

How to use?

import re
from transformers import BertForSequenceClassification, AutoTokenizer

model_name = "AMR-KELEG/Sentence-ALDi"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = BertForSequenceClassification.from_pretrained(model_name)

def preprocess_text(arabic_text):
    """Apply preprocessing to the given Arabic text.

    Args:
        arabic_text: The Arabic text to be preprocessed.

    Returns:
        The preprocessed Arabic text.
    """
    no_urls = re.sub(
        r"(https|http)?:\/\/(\w|\.|\/|\?|\=|\&|\%)*\b",
        "",
        arabic_text,
        flags=re.MULTILINE,
    )
    no_english = re.sub(r"[a-zA-Z]", "", no_urls)

    return no_english

def compute_ALDi(sentence):
    """Computes the ALDi score for the given sentences.

    Args:
        sentences: A list of Arabic sentences.

    Returns:
        A list of ALDi scores for the given sentences.
    """

    preprocessed_sentence = preprocess_text(sentence)

    inputs = tokenizer(
        preprocessed_sentence,
        return_tensors="pt",
        padding=True,
    )
    output = model(**inputs).logits.reshape(-1).tolist()[0]
    return max(min(output, 1), 0)

sentence = "حطها في الجول يا رياض"
print("The Estimated ALDi score is", compute_ALDi(sentence))

Dependencies

  • Create a conda env:
conda create -n ALDi python=3.9.16
  • Activate the environment, and install the dependencies:
conda activate ALDi
pip install -r requirements.txt
  • For using the Dialect Identification model of camel_tools:
camel_data -i defaults

Data

The following scripts download the datasets from their respective sources, then apply the preprocessing steps described in the paper, generating .tsv data files to the data/ directory.

  • Create the splits for the AOC-ALDi dataset:
python prepare_AOC.py
  • Form parallel corpora files:
python prepare_DIAL2MSA.py
python prepare_bible.py

Models

Sentence-ALDi model

  • Fine-tuning the Sentence-ALDi model
# Set the ID of the GPU device
CUDA_ID="0"

# Fine-tune the model
SEED="42"
MODEL_NAME="UBC-NLP/MARBERT"
CUDA_VISIBLE_DEVICES="$CUDA_ID" python finetune_BERT_models.py train --train data/AOC/train.tsv --dev data/AOC/dev.tsv -model_name "$MODEL_NAME" -o Sentence_ALDi -s "$SEED"

Baseline models

  • Building the MSA lexicon baseline (generates a pkl file to data/MSA_raw_corpora)
python form_msa_lexicon.py form_lexicon -c UN
  • Fine-tuning the Token-DI model
# Set the ID of the GPU device
CUDA_ID="0"

# Fine-tune the model
SEED="42"
CUDA_VISIBLE_DEVICES="$CUDA_ID" python finetune_BERT_for_tagging.py -s "$SEED" -o TOKEN_DI

Results

  • Computing RMSE on AOC-ALDi's test set (Table 6)
RESULTS_DIR="AOC_ALDi_RMSE"
DATASET="AOC"
SENTENCE_ALDi_HF_MODEL="AMR-KELEG/Sentence-ALDi"
TOKEN_DI_HF_MODEL="AMR-KELEG/ALDi-Token-DI"
CUDA_ID="0"

for SEED in "30" "50"
do
    CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset "${DATASET}" -metric regression \
        -results_dir ${RESULTS_DIR} -split "test" -o "REGRESSION_${DATASET}_${SEED}.tsv" -model_path "${SENTENCE_ALDi_HF_MODEL}-${SEED}"

    CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset ${DATASET} -metric tagging \
        -results_dir ${RESULTS_DIR} -split "test" -o "TOKEN_DI_${DATASET}_${SEED}.tsv" -model_path "${TOKEN_DI_HF_MODEL}-${SEED}"
done

CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset "${DATASET}" -metric regression \
    -results_dir ${RESULTS_DIR} -split "test" -o "REGRESSION_${DATASET}_42.tsv" -model_path "${SENTENCE_ALDi_HF_MODEL}"

CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset ${DATASET} -metric tagging \
    -results_dir ${RESULTS_DIR} -split "test" -o "TOKEN_DI_${DATASET}_42.tsv" -model_path "${TOKEN_DI_HF_MODEL}"

CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset "${DATASET}" -metric di \
    -results_dir ${RESULTS_DIR} -split "test" -o "SENTENCE_DI_${DATASET}.tsv"

CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset "${DATASET}" -metric lexicon -lexicon_source UN \
    -results_dir ${RESULTS_DIR} -split "test" -o "LEXICON_${DATASET}.tsv"

cd assets/ && python table6.py
  • Generating box plots for parallel sentences of the Bible and DIAL2MSA (Figure 3)
RESULTS_DIR="PARALLEL_CORPORA"
SENTENCE_ALDi_HF_MODEL="AMR-KELEG/Sentence-ALDi"
TOKEN_DI_HF_MODEL="AMR-KELEG/ALDi-Token-DI"
SEED=42
CUDA_ID="0"

dataset="DIAL2MSA"
for dialect in "EGY" "MGR"
do
    # Sentence ALDi
    CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset ${dataset} -metric regression \
    -results_dir ${RESULTS_DIR} -dialect_or_source $dialect -o "REGRESSION_${dataset}_${dialect}_${SEED}.tsv" \
    -model_path "${SENTENCE_ALDi_HF_MODEL}"

    # Token DI
    CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset ${dataset} -metric tagging \
    -results_dir ${RESULTS_DIR} -dialect_or_source $dialect -o "TOKEN_DI_${dataset}_${dialect}_${SEED}.tsv" \
    -model_path "${TOKEN_DI_HF_MODEL}"

    # LEXICON
    CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset ${dataset} -metric lexicon -lexicon_source UN \
    -results_dir ${RESULTS_DIR} -dialect_or_source $dialect -o "LEXICON_${dataset}_${dialect}.tsv"

    # Sentence DI
    CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset ${dataset} -metric di \
    -results_dir ${RESULTS_DIR} -dialect_or_source $dialect -o "SENTENCE_DI_${dataset}_${dialect}.tsv"
done

dataset="BIBLE"
for dialect in "tn" "ma"
do
    # Sentence ALDi
    CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset ${dataset} -metric regression \
    -results_dir ${RESULTS_DIR} -dialect_or_source $dialect -o "REGRESSION_${dataset}_${dialect}_${SEED}.tsv" \
    -model_path "${SENTENCE_ALDi_HF_MODEL}"

    # Token DI
    CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset ${dataset} -metric tagging \
    -results_dir ${RESULTS_DIR} -dialect_or_source $dialect -o "TOKEN_DI_${dataset}_${dialect}_${SEED}.tsv" \
    -model_path "${TOKEN_DI_HF_MODEL}"

    # LEXICON
    CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset ${dataset} -metric lexicon -lexicon_source UN \
    -results_dir ${RESULTS_DIR} -dialect_or_source $dialect -o "LEXICON_${dataset}_${dialect}.tsv"

    # Sentence DI
    CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset ${dataset} -metric di \
    -results_dir ${RESULTS_DIR} -dialect_or_source $dialect -o "SENTENCE_DI_${dataset}_${dialect}.tsv"
done

cd assets/ && python fig3_parallel_boxplots.py
  • Generating the scores for the contrastive sentences
DATASET="CONTRAST"
RESULTS_DIR="Contrastive_scores"
SENTENCE_ALDi_HF_MODEL="AMR-KELEG/Sentence-ALDi"
TOKEN_DI_HF_MODEL="AMR-KELEG/ALDi-Token-DI"
CUDA_ID="0"

for SEED in "30" "50"
do
    CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset "${DATASET}" -metric regression \
        -results_dir ${RESULTS_DIR} -o "REGRESSION_${DATASET}_${SEED}.tsv" -model_path "${SENTENCE_ALDi_HF_MODEL}-${SEED}"

    CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset ${DATASET} -metric tagging \
        -results_dir ${RESULTS_DIR} -o "TOKEN_DI_${DATASET}_${SEED}.tsv" -model_path "${TOKEN_DI_HF_MODEL}-${SEED}"
done

CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset "${DATASET}" -metric regression \
    -results_dir ${RESULTS_DIR} -o "REGRESSION_${DATASET}_42.tsv" -model_path "${SENTENCE_ALDi_HF_MODEL}"

CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset ${DATASET} -metric tagging \
    -results_dir ${RESULTS_DIR} -o "TOKEN_DI_${DATASET}_42.tsv" -model_path "${TOKEN_DI_HF_MODEL}"

CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset "${DATASET}" -metric di \
    -results_dir ${RESULTS_DIR} -split "test" -o "SENTENCE_DI_${DATASET}.tsv"

CUDA_VISIBLE_DEVICES="$CUDA_ID" python run_dialectness_score_experiment.py -dataset "${DATASET}" -metric lexicon -lexicon_source UN \
    -results_dir ${RESULTS_DIR} -split "test" -o "LEXICON_${DATASET}.tsv"

cd assets && python table7.py
  • Generating the scatter plots for political speeches
# Scrape Alsisi's speeches
cd analysis/speeches/ && python scrape-speeches.py && cd ../../

# Perform the scoring and plot generation!
cd assets && python fig4_speeches.py

Technical information

The models and experiments were run on a single Quadro RTX 8000 GPU with 48GB of VRAM.

Citation

@inproceedings{keleg-etal-2023-aldi,
    title = "{ALD}i: Quantifying the {A}rabic Level of Dialectness of Text",
    author = "Keleg, Amr  and
      Goldwater, Sharon  and
      Magdy, Walid",
    editor = "Bouamor, Houda  and
      Pino, Juan  and
      Bali, Kalika",
    booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.emnlp-main.655",
    doi = "10.18653/v1/2023.emnlp-main.655",
    pages = "10597--10611",
    abstract = "Transcribed speech and user-generated text in Arabic typically contain a mixture of Modern Standard Arabic (MSA), the standardized language taught in schools, and Dialectal Arabic (DA), used in daily communications. To handle this variation, previous work in Arabic NLP has focused on Dialect Identification (DI) on the sentence or the token level. However, DI treats the task as binary, whereas we argue that Arabic speakers perceive a spectrum of dialectness, which we operationalize at the sentence level as the Arabic Level of Dialectness (ALDi), a continuous linguistic variable. We introduce the AOC-ALDi dataset (derived from the AOC dataset), containing 127,835 sentences (17{\%} from news articles and 83{\%} from user comments on those articles) which are manually labeled with their level of dialectness. We provide a detailed analysis of AOC-ALDi and show that a model trained on it can effectively identify levels of dialectness on a range of other corpora (including dialects and genres not included in AOC-ALDi), providing a more nuanced picture than traditional DI systems. Through case studies, we illustrate how ALDi can reveal Arabic speakers{'} stylistic choices in different situations, a useful property for sociolinguistic analyses.",
}