-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathutils.py
409 lines (369 loc) · 16.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import collections.abc as container_abcs
import errno
import os
from itertools import repeat
import numpy as np
import torch
import torch.optim as optim
from torchvision.utils import save_image
from config import cfg
def check_exists(path):
return os.path.exists(path)
def makedir_exist_ok(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise
return
def save(input, path, protocol=2, mode='torch'):
dirname = os.path.dirname(path)
makedir_exist_ok(dirname)
if mode == 'torch':
torch.save(input, path, pickle_protocol=protocol)
elif mode == 'numpy':
np.save(path, input, allow_pickle=True)
else:
raise ValueError('Not valid save mode')
return
def load(path, mode='torch'):
if mode == 'torch':
return torch.load(path, map_location=lambda storage, loc: storage)
elif mode == 'numpy':
return np.load(path, allow_pickle=True)
else:
raise ValueError('Not valid save mode')
return
def save_img(img, path, nrow=10, padding=2, pad_value=0, range=None):
makedir_exist_ok(os.path.dirname(path))
normalize = False if range is None else True
save_image(img, path, nrow=nrow, padding=padding, pad_value=pad_value, normalize=normalize, range=range)
return
def to_device(input, device):
output = recur(lambda x, y: x.to(y), input, device)
return output
def ntuple(n):
def parse(x):
if isinstance(x, container_abcs.Iterable) and not isinstance(x, str):
return x
return tuple(repeat(x, n))
return parse
def apply_fn(module, fn):
for n, m in module.named_children():
if hasattr(m, fn):
exec('m.{0}()'.format(fn))
if sum(1 for _ in m.named_children()) != 0:
exec('apply_fn(m,\'{0}\')'.format(fn))
return
def recur(fn, input, *args):
if isinstance(input, torch.Tensor) or isinstance(input, np.ndarray):
output = fn(input, *args)
elif isinstance(input, list):
output = []
for i in range(len(input)):
output.append(recur(fn, input[i], *args))
elif isinstance(input, tuple):
output = []
for i in range(len(input)):
output.append(recur(fn, input[i], *args))
output = tuple(output)
elif isinstance(input, dict):
output = {}
for key in input:
output[key] = recur(fn, input[key], *args)
else:
raise ValueError('Not valid input type')
return output
def process_dataset(dataset):
if cfg['data_name'] in ['MNIST', 'CIFAR10', 'CIFAR100']:
cfg['classes_size'] = dataset['train'].classes_size
elif cfg['data_name'] in ['WikiText2', 'WikiText103', 'PennTreebank']:
cfg['vocab'] = dataset['train'].vocab
cfg['num_tokens'] = len(dataset['train'].vocab)
for split in dataset:
dataset[split] = batchify(dataset[split], cfg['batch_size'][split])
elif cfg['data_name'] in ['Stackoverflow']:
# cfg['vocab'] = dataset['vocab']
cfg['num_tokens'] = len(dataset['vocab'])
elif cfg['data_name'] in ['gld']:
cfg['classes_size'] = 2028
else:
raise ValueError('Not valid data name')
return
def process_control():
cfg['model_split_rate'] = {'a': 1, 'b': 0.5, 'c': 0.25, 'd': 0.125, 'e': 0.0625}
cfg['fed'] = int(cfg['control']['fed'])
cfg['num_users'] = int(cfg['control']['num_users'])
cfg['frac'] = float(cfg['control']['frac'])
cfg['data_split_mode'] = cfg['control']['data_split_mode']
cfg['model_split_mode'] = cfg['control']['model_split_mode']
cfg['model_mode'] = cfg['control']['model_mode']
cfg['norm'] = cfg['control']['norm']
cfg['scale'] = bool(int(cfg['control']['scale']))
cfg['mask'] = bool(int(cfg['control']['mask']))
cfg['global_model_mode'] = cfg['model_mode'][0]
cfg['global_model_rate'] = cfg['model_split_rate'][cfg['global_model_mode']]
model_mode = cfg['model_mode'].split('-')
if cfg['model_split_mode'] == 'dynamic':
mode_rate, proportion = [], []
for m in model_mode:
mode_rate.append(cfg['model_split_rate'][m[0]])
proportion.append(int(m[1:]))
cfg['model_rate'] = mode_rate
cfg['proportion'] = (np.array(proportion) / sum(proportion)).tolist()
elif cfg['model_split_mode'] == 'fix':
mode_rate, proportion = [], []
for m in model_mode:
mode_rate.append(cfg['model_split_rate'][m[0]])
proportion.append(int(m[1:]))
num_users_proportion = cfg['num_users'] // sum(proportion)
cfg['model_rate'] = []
for i in range(len(mode_rate)):
cfg['model_rate'] += np.repeat(mode_rate[i], num_users_proportion * proportion[i]).tolist()
cfg['model_rate'] = cfg['model_rate'] + [cfg['model_rate'][-1] for _ in
range(cfg['num_users'] - len(cfg['model_rate']))]
else:
raise ValueError('Not valid model split mode')
cfg['conv'] = {'hidden_size': [64, 128, 256, 512]}
cfg['resnet'] = {'hidden_size': [64, 128, 256, 512]}
cfg['transformer'] = {'embedding_size': 128,
'num_heads': 8,
'hidden_size': 2048,
'num_layers': 3,
'dropout': 0.1}
if cfg['data_name'] in ['MNIST']:
cfg['data_shape'] = [1, 28, 28]
cfg['optimizer_name'] = 'SGD'
# cfg['lr'] = 1e-2
cfg['momentum'] = 0.9
cfg['weight_decay'] = 5e-4
cfg['scheduler_name'] = 'MultiStepLR'
cfg['factor'] = 0.1
if cfg['data_split_mode'] == 'iid':
# cfg['num_epochs'] = {'global': 200, 'local': 5}
cfg['batch_size'] = {'train': 24, 'test': 100}
# cfg['milestones'] = [100]
elif 'non-iid' in cfg['data_split_mode']:
# cfg['num_epochs'] = {'global': 400, 'local': 5}
cfg['batch_size'] = {'train': 10, 'test': 100}
cfg['milestones'] = [200]
elif cfg['data_split_mode'] == 'none':
cfg['num_epochs'] = 200
cfg['batch_size'] = {'train': 100, 'test': 500}
# cfg['milestones'] = [100]
else:
raise ValueError('Not valid data_split_mode')
elif cfg['data_name'] in ['CIFAR10', 'CIFAR100']:
cfg['data_shape'] = [3, 32, 32]
cfg['optimizer_name'] = 'SGD'
# cfg['lr'] = 1e-4
cfg['momentum'] = 0.9
cfg['min_lr'] = 1e-4
cfg['weight_decay'] = 1e-3
cfg['scheduler_name'] = 'MultiStepLR'
cfg['factor'] = 0.25
if cfg['data_split_mode'] == 'iid':
# cfg['num_epochs'] = {'global': 2500, 'local': 1}
cfg['batch_size'] = {'train': 10, 'test': 100}
# cfg['milestones'] = [1000, 1500, 2000]
elif 'non-iid' in cfg['data_split_mode']:
# cfg['num_epochs'] = {'global': 2500, 'local': 1}
cfg['batch_size'] = {'train': 10, 'test': 100}
# cfg['milestones'] = [1000, 1500, 2000]
elif cfg['data_split_mode'] == 'none':
cfg['num_epochs'] = 400
cfg['batch_size'] = {'train': 100, 'test': 500}
# cfg['milestones'] = [150, 250]
else:
raise ValueError('Not valid data_split_mode')
elif cfg['data_name'] in ['gld']:
cfg['data_shape'] = [3, 92, 92]
cfg['optimizer_name'] = 'SGD'
# cfg['lr'] = 1e-4
cfg['num_users'] = 1262
cfg['active_user'] = 80
cfg['momentum'] = 0.9
cfg['min_lr'] = 5e-4
cfg['weight_decay'] = 1e-3
cfg['scheduler_name'] = 'MultiStepLR'
cfg['factor'] = 0.1
if cfg['data_split_mode'] == 'iid':
# cfg['num_epochs'] = {'global': 2500, 'local': 1}
cfg['batch_size'] = {'train': 32, 'test': 50}
# cfg['milestones'] = [1000, 1500, 2000]
elif 'non-iid' in cfg['data_split_mode']:
# cfg['num_epochs'] = {'global': 2500, 'local': 1}
cfg['batch_size'] = {'train': 32, 'test': 50}
# cfg['milestones'] = [1000, 1500, 2000]
elif cfg['data_split_mode'] == 'none':
cfg['num_epochs'] = 400
cfg['batch_size'] = {'train': 100, 'test': 500}
# cfg['milestones'] = [150, 250]
else:
raise ValueError('Not valid data_split_mode')
elif cfg['data_name'] in ['PennTreebank', 'WikiText2', 'WikiText103']:
cfg['optimizer_name'] = 'SGD'
# cfg['lr'] = 1e-2
cfg['momentum'] = 0.9
cfg['weight_decay'] = 5e-4
cfg['scheduler_name'] = 'MultiStepLR'
cfg['factor'] = 0.1
cfg['bptt'] = 64
cfg['mask_rate'] = 0.15
if cfg['data_split_mode'] == 'iid':
# cfg['num_epochs'] = {'global': 200, 'local': 3}
cfg['batch_size'] = {'train': 100, 'test': 10}
cfg['milestones'] = [50, 100]
elif cfg['data_split_mode'] == 'none':
cfg['num_epochs'] = 100
cfg['batch_size'] = {'train': 100, 'test': 100}
# cfg['milestones'] = [25, 50]
else:
raise ValueError('Not valid data_split_mode')
elif cfg['data_name'] in ['Stackoverflow']:
cfg['optimizer_name'] = 'SGD'
cfg['num_users'] = 342477
cfg['active_user'] = 50
cfg['momentum'] = 0.9
cfg['weight_decay'] = 5e-4
cfg['scheduler_name'] = 'MultiStepLR'
cfg['factor'] = 0.1
cfg['bptt'] = 64
cfg['batch_size'] = {'train': 24, 'test': 24}
cfg['mask_rate'] = 0.15
cfg['num_users'] = 342477
cfg['seq_length'] = 21
else:
raise ValueError('Not valid dataset')
return
def make_stats(dataset):
if os.path.exists('./data/stats/{}.pt'.format(dataset.data_name)):
stats = load('./data/stats/{}.pt'.format(dataset.data_name))
elif dataset is not None:
data_loader = torch.utils.data.DataLoader(dataset, batch_size=100, shuffle=False, num_workers=0)
stats = Stats(dim=1)
with torch.no_grad():
for input in data_loader:
stats.update(input['img'])
save(stats, './data/stats/{}.pt'.format(dataset.data_name))
return stats
class Stats(object):
def __init__(self, dim):
self.dim = dim
self.n_samples = 0
self.n_features = None
self.mean = None
self.std = None
def update(self, data):
data = data.transpose(self.dim, -1).reshape(-1, data.size(self.dim))
if self.n_samples == 0:
self.n_samples = data.size(0)
self.n_features = data.size(1)
self.mean = data.mean(dim=0)
self.std = data.std(dim=0)
else:
m = float(self.n_samples)
n = data.size(0)
new_mean = data.mean(dim=0)
new_std = 0 if n == 1 else data.std(dim=0)
old_mean = self.mean
old_std = self.std
self.mean = m / (m + n) * old_mean + n / (m + n) * new_mean
self.std = torch.sqrt(m / (m + n) * old_std ** 2 + n / (m + n) * new_std ** 2 + m * n / (m + n) ** 2 * (
old_mean - new_mean) ** 2)
self.n_samples += n
return
def make_optimizer(model, lr):
if cfg['optimizer_name'] == 'SGD':
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=cfg['momentum'],
weight_decay=cfg['weight_decay'])
elif cfg['optimizer_name'] == 'RMSprop':
optimizer = optim.RMSprop(model.parameters(), lr=lr, momentum=cfg['momentum'],
weight_decay=cfg['weight_decay'])
elif cfg['optimizer_name'] == 'Adam':
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=cfg['weight_decay'])
elif cfg['optimizer_name'] == 'Adamax':
optimizer = optim.Adamax(model.parameters(), lr=lr, weight_decay=cfg['weight_decay'])
else:
raise ValueError('Not valid optimizer name')
return optimizer
def make_scheduler(optimizer):
if cfg['scheduler_name'] == 'None':
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[65535])
elif cfg['scheduler_name'] == 'StepLR':
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=cfg['step_size'], gamma=cfg['factor'])
elif cfg['scheduler_name'] == 'MultiStepLR':
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg['milestones'], gamma=cfg['factor'])
elif cfg['scheduler_name'] == 'ExponentialLR':
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.99)
elif cfg['scheduler_name'] == 'CosineAnnealingLR':
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=cfg['num_epochs']['global'],
eta_min=cfg['min_lr'])
elif cfg['scheduler_name'] == 'ReduceLROnPlateau':
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=cfg['factor'],
patience=cfg['patience'], verbose=True,
threshold=cfg['threshold'], threshold_mode='rel',
min_lr=cfg['min_lr'])
elif cfg['scheduler_name'] == 'CyclicLR':
scheduler = optim.lr_scheduler.CyclicLR(optimizer, base_lr=cfg['lr'], max_lr=10 * cfg['lr'])
else:
raise ValueError('Not valid scheduler name')
return scheduler
def resume(model, model_tag, optimizer=None, scheduler=None, load_tag='checkpoint', strict=True, verbose=True):
if cfg['data_split_mode'] != 'none':
if os.path.exists('./output/model/{}_{}.pt'.format(model_tag, load_tag)):
checkpoint = load('./output/model/{}_{}.pt'.format(model_tag, load_tag))
last_epoch = checkpoint['epoch']
data_split = checkpoint['data_split']
label_split = checkpoint['label_split']
model.load_state_dict(checkpoint['model_dict'], strict=strict)
if optimizer is not None:
optimizer.load_state_dict(checkpoint['optimizer_dict'])
if scheduler is not None:
scheduler.load_state_dict(checkpoint['scheduler_dict'])
logger = checkpoint['logger']
if verbose:
print('Resume from {}'.format(last_epoch))
else:
print('Not exists model tag: {}, start from scratch'.format(model_tag))
from datetime import datetime
from logger import Logger
last_epoch = 1
data_split = None
label_split = None
logger_path = 'output/runs/train_{}_{}'.format(cfg['model_tag'], datetime.now().strftime('%b%d_%H-%M-%S'))
logger = Logger(logger_path)
return last_epoch, data_split, label_split, model, optimizer, scheduler, logger
else:
if os.path.exists('./output/model/{}_{}.pt'.format(model_tag, load_tag)):
checkpoint = load('./output/model/{}_{}.pt'.format(model_tag, load_tag))
last_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model_dict'], strict=strict)
if optimizer is not None:
optimizer.load_state_dict(checkpoint['optimizer_dict'])
if scheduler is not None:
scheduler.load_state_dict(checkpoint['scheduler_dict'])
logger = checkpoint['logger']
if verbose:
print('Resume from {}'.format(last_epoch))
else:
print('Not exists model tag: {}, start from scratch'.format(model_tag))
from datetime import datetime
from logger import Logger
last_epoch = 1
logger_path = 'output/runs/train_{}_{}'.format(cfg['model_tag'], datetime.now().strftime('%b%d_%H-%M-%S'))
logger = Logger(logger_path)
return last_epoch, model, optimizer, scheduler, logger
def collate(input):
if 'label' in input.keys():
input['label'] = [torch.tensor(i) for i in input['label']]
for k in input:
input[k] = torch.stack(input[k], 0)
return input
def batchify(dataset, batch_size):
num_batch = len(dataset) // batch_size
dataset.token = dataset.token.narrow(0, 0, num_batch * batch_size)
dataset.token = dataset.token.reshape(batch_size, -1)
return dataset