-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_classifier.py
159 lines (144 loc) · 7.04 KB
/
train_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import argparse
import datetime
import os
import shutil
import time
import torch
import torch.backends.cudnn as cudnn
from config import cfg
from data import fetch_dataset, make_data_loader
from logger import Logger
from metrics import Metric
from utils import save, to_device, process_control, process_dataset, make_optimizer, make_scheduler, resume, collate
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
parser = argparse.ArgumentParser(description='cfg')
for k in cfg:
exec('parser.add_argument(\'--{0}\', default=cfg[\'{0}\'], type=type(cfg[\'{0}\']))'.format(k))
parser.add_argument('--control_name', default=None, type=str)
args = vars(parser.parse_args())
for k in cfg:
cfg[k] = args[k]
if args['control_name']:
cfg['control'] = {k: v for k, v in zip(cfg['control'].keys(), args['control_name'].split('_'))} \
if args['control_name'] != 'None' else {}
cfg['control_name'] = '_'.join([cfg['control'][k] for k in cfg['control']])
cfg['pivot_metric'] = 'Global-Accuracy'
cfg['pivot'] = -float('inf')
cfg['metric_name'] = {'train': {'Local': ['Local-Loss', 'Local-Accuracy']},
'test': {'Local': ['Local-Loss', 'Local-Accuracy'], 'Global': ['Global-Loss', 'Global-Accuracy']}}
def main():
process_control()
seeds = list(range(cfg['init_seed'], cfg['init_seed'] + cfg['num_experiments']))
for i in range(cfg['num_experiments']):
model_tag_list = [str(seeds[i]), cfg['data_name'], cfg['subset'], cfg['model_name'], cfg['control_name']]
cfg['model_tag'] = '_'.join([x for x in model_tag_list if x])
print('Experiment: {}'.format(cfg['model_tag']))
runExperiment()
return
def runExperiment():
seed = int(cfg['model_tag'].split('_')[0])
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
dataset = fetch_dataset(cfg['data_name'], cfg['subset'])
process_dataset(dataset)
data_loader = make_data_loader(dataset)
model = eval('models.{}(model_rate=cfg["global_model_rate"]).to(cfg["device"])'.format(cfg['model_name']))
optimizer = make_optimizer(model, cfg['lr'])
scheduler = make_scheduler(optimizer)
if cfg['resume_mode'] == 1:
last_epoch, model, optimizer, scheduler, logger = resume(model, cfg['model_tag'], optimizer, scheduler)
elif cfg['resume_mode'] == 2:
last_epoch = 1
_, model, _, _, _ = resume(model, cfg['model_tag'])
logger_path = os.path.join('output', 'runs', '{}'.format(cfg['model_tag']))
logger = Logger(logger_path)
else:
last_epoch = 1
logger_path = os.path.join('output', 'runs', 'train_{}'.format(cfg['model_tag']))
logger = Logger(logger_path)
if cfg['world_size'] > 1:
model = torch.nn.DataParallel(model, device_ids=list(range(cfg['world_size'])))
print(cfg['num_epochs'])
for epoch in range(last_epoch, cfg['num_epochs']['global'] + 1):
logger.safe(True)
train(data_loader['train'], model, optimizer, logger, epoch)
test_model = stats(data_loader['train'], model)
test(data_loader['test'], test_model, logger, epoch)
if cfg['scheduler_name'] == 'ReduceLROnPlateau':
scheduler.step(metrics=logger.mean['train/{}'.format(cfg['pivot_metric'])])
else:
scheduler.step()
logger.safe(False)
model_state_dict = model.module.state_dict() if cfg['world_size'] > 1 else model.state_dict()
save_result = {
'cfg': cfg, 'epoch': epoch + 1, 'model_dict': model_state_dict,
'optimizer_dict': optimizer.state_dict(), 'scheduler_dict': scheduler.state_dict(),
'logger': logger}
save(save_result, './output/model/{}_checkpoint.pt'.format(cfg['model_tag']))
if cfg['pivot'] < logger.mean['test/{}'.format(cfg['pivot_metric'])]:
cfg['pivot'] = logger.mean['test/{}'.format(cfg['pivot_metric'])]
shutil.copy('./output/model/{}_checkpoint.pt'.format(cfg['model_tag']),
'./output/model/{}_best.pt'.format(cfg['model_tag']))
logger.reset()
logger.safe(False)
return
def train(data_loader, model, optimizer, logger, epoch):
metric = Metric()
model.train(True)
start_time = time.time()
for i, input in enumerate(data_loader):
input = collate(input)
input_size = input['img'].size(0)
input = to_device(input, cfg['device'])
optimizer.zero_grad()
output = model(input)
output['loss'] = output['loss'].mean() if cfg['world_size'] > 1 else output['loss']
output['loss'].backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1)
optimizer.step()
evaluation = metric.evaluate(cfg['metric_name']['train'], input, output)
logger.append(evaluation, 'train', n=input_size)
if i % int((len(data_loader) * cfg['log_interval']) + 1) == 0:
batch_time = (time.time() - start_time) / (i + 1)
lr = optimizer.param_groups[0]['lr']
epoch_finished_time = datetime.timedelta(seconds=round(batch_time * (len(data_loader) - i - 1)))
exp_finished_time = epoch_finished_time + datetime.timedelta(
seconds=round((cfg['num_epochs']['global'] - epoch) * batch_time * len(data_loader)))
info = {'info': ['Model: {}'.format(cfg['model_tag']),
'Train Epoch: {}({:.0f}%)'.format(epoch, 100. * i / len(data_loader)),
'Learning rate: {}'.format(lr), 'Epoch Finished Time: {}'.format(epoch_finished_time),
'Experiment Finished Time: {}'.format(exp_finished_time)]}
logger.append(info, 'train', mean=False)
logger.write('train', cfg['metric_name']['train'])
return
def stats(data_loader, model):
with torch.no_grad():
test_model = eval('models.{}(model_rate=cfg["global_model_rate"], track=True).to(cfg["device"])'
.format(cfg['model_name']))
test_model.load_state_dict(model.state_dict(), strict=False)
test_model.train(True)
for i, input in enumerate(data_loader):
input = collate(input)
input = to_device(input, cfg['device'])
test_model(input)
return test_model
def test(data_loader, model, logger, epoch):
with torch.no_grad():
metric = Metric()
model.train(False)
for i, input in enumerate(data_loader):
input = collate(input)
input_size = input['img'].size(0)
input = to_device(input, cfg['device'])
output = model(input)
output['loss'] = output['loss'].mean() if cfg['world_size'] > 1 else output['loss']
evaluation = metric.evaluate(cfg['metric_name']['test'], input, output)
logger.append(evaluation, 'test', input_size)
info = {'info': ['Model: {}'.format(cfg['model_tag']), 'Test Epoch: {}({:.0f}%)'.format(epoch, 100.)]}
logger.append(info, 'test', mean=False)
logger.write('test', cfg['metric_name']['test'])
return
if __name__ == "__main__":
main()