-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils_pytorch.py
296 lines (248 loc) · 10.2 KB
/
utils_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from copy import deepcopy
import os
from collections import namedtuple
import numpy as np
import torch
from torch.jit import trace
# ------ Data Loading ------
from torch.utils.data.dataset import Dataset
from torch.utils.data.dataloader import DataLoader
import os
if 'DISENTANGLEMENT_LIB_DATA' not in os.environ:
os.environ.update({'DISENTANGLEMENT_LIB_DATA': os.path.join(os.path.dirname(__file__),
'scratch',
'dataset')})
# noinspection PyUnresolvedReferences
from disentanglement_lib.data.ground_truth.named_data import get_named_ground_truth_data
# --------------------------
ExperimentConfig = namedtuple('ExperimentConfig',
('base_path', 'experiment_name', 'dataset_name'))
def get_config():
"""
This function reads the environment variables AICROWD_OUTPUT_PATH,
AICROWD_EVALUATION_NAME and AICROWD_DATASET_NAME and returns a
named tuple.
"""
return ExperimentConfig(base_path=os.getenv("AICROWD_OUTPUT_PATH", "./scratch/shared"),
experiment_name=os.getenv("AICROWD_EVALUATION_NAME", "experiment_name"),
dataset_name=os.getenv("AICROWD_DATASET_NAME", "cars3d"))
def get_dataset_name():
"""Reads the name of the dataset from the environment variable `AICROWD_DATASET_NAME`."""
return os.getenv("AICROWD_DATASET_NAME", "cars3d")
def use_cuda():
"""
Whether to use CUDA for evaluation. Returns True if CUDA is available and
the environment variable AICROWD_CUDA is not set to False.
"""
return torch.cuda.is_available() and os.getenv('AICROWD_CUDA', True)
def get_model_path(base_path=None, experiment_name=None, make=True):
"""
This function gets the path to where the model is expected to be stored.
Parameters
----------
base_path : str
Path to the directory where the experiments are to be stored.
This defaults to AICROWD_OUTPUT_PATH (see `get_config` above) and which in turn
defaults to './scratch/shared'.
experiment_name : str
Name of the experiment. This defaults to AICROWD_EVALUATION_NAME which in turn
defaults to 'experiment_name'.
make : Makes the directory where the returned path leads to (if it doesn't exist already)
Returns
-------
str
Path to where the model should be stored (to be found by the evaluation function later).
"""
base_path = os.getenv("AICROWD_OUTPUT_PATH","../scratch/shared") \
if base_path is None else base_path
experiment_name = os.getenv("AICROWD_EVALUATION_NAME", "experiment_name") \
if experiment_name is None else experiment_name
model_path = os.path.join(base_path, experiment_name, 'representation', 'pytorch_model.pt')
if make:
os.makedirs(os.path.dirname(model_path), exist_ok=True)
os.makedirs(os.path.join(os.path.dirname(model_path), 'results'), exist_ok=True)
return model_path
def export_model(model, path=None, input_shape=(1, 3, 64, 64), use_script_module=True):
"""
Exports the model. If the model is a `ScriptModule`, it is saved as is. If not,
it is traced (with the given input_shape) and the resulting ScriptModule is saved
(this requires the `input_shape`, which defaults to the competition default).
Parameters
----------
model : torch.nn.Module or torch.jit.ScriptModule
Pytorch Module or a ScriptModule.
path : str
Path to the file where the model is saved. Defaults to the value set by the
`get_model_path` function above.
input_shape : tuple or list
Shape of the input to trace the module with. This is only required if model is not a
torch.jit.ScriptModule.
use_script_module : True or False (default = True)
If True saves model as torch.jit.ScriptModule -- this is highly recommended.
Setting it to False may cause later evaluation to fail.
Returns
-------
str
Path to where the model is saved.
"""
path = get_model_path() if path is None else path
model = deepcopy(model).cpu().eval()
if isinstance(model, torch.jit.ScriptModule):
assert use_script_module, "Provided model is a ScriptModule, please set use_script_module to True."
if use_script_module:
if not isinstance(model, torch.jit.ScriptModule):
assert input_shape is not None, "`input_shape` must be provided since model is not a " \
"`ScriptModule`."
traced_model = trace(model, torch.zeros(*input_shape))
else:
traced_model = model
torch.jit.save(traced_model, path)
else:
torch.save(model, path) # saves model as a nn.Module
return path
def import_model(path=None):
"""
Imports a model (as torch.jit.ScriptModule or torch.nn.Module) from file.
By default the file is imported as torch.jit.ScriptModule. If it fails due to saved model being torch.nn.Module, the file is imported as torch.nn.Module.
Parameters
----------
path : str
Path to where the model is saved. Defaults to the return value of the `get_model_path`
Returns
-------
torch.jit.ScriptModule / torch.nn.Module
The model file.
"""
path = get_model_path() if path is None else path
try:
return torch.jit.load(path)
except RuntimeError:
try:
return torch.load(path) # loads model as a nn.Module
except Exception as e:
raise IOError("Could not load file. Please save as torch.jit.ScriptModule instead.") from e
def make_representor(model, cuda=None):
"""
Encloses the pytorch ScriptModule in a callable that can be used by `disentanglement_lib`.
Parameters
----------
model : torch.nn.Module or torch.jit.ScriptModule
The Pytorch model.
cuda : bool
Whether to use CUDA for inference. Defaults to the return value of the `use_cuda`
function defined above.
Returns
-------
callable
A callable function (`representation_function` in dlib code)
"""
# Deepcopy doesn't work on ScriptModule objects yet:
# https://github.com/pytorch/pytorch/issues/18106
# model = deepcopy(model)
cuda = use_cuda() if cuda is None else cuda
model = model.cuda() if cuda else model.cpu()
# Define the representation function
def _represent(x):
assert isinstance(x, np.ndarray), \
"Input to the representation function must be a ndarray."
assert x.ndim == 4, \
"Input to the representation function must be a four dimensional NHWC tensor."
# Convert from NHWC to NCHW
x = np.moveaxis(x, 3, 1)
# Convert to torch tensor and evaluate
x = torch.from_numpy(x).float().to('cuda' if cuda else 'cpu')
with torch.no_grad():
y = model(x)
y = y.cpu().numpy()
assert y.ndim == 2, \
"The returned output from the representor must be two dimensional (NC)."
return y
return _represent
class DLIBDataset(Dataset):
"""
No-bullshit data-loading from Disentanglement Library, but with a few sharp edges.
Sharp edge:
Unlike a traditional Pytorch dataset, indexing with _any_ index fetches a random batch.
What this means is dataset[0] != dataset[0]. Also, you'll need to specify the size
of the dataset, which defines the length of one training epoch.
This is done to ensure compatibility with disentanglement_lib.
"""
def __init__(self, name, seed=0, iterator_len=50000):
"""
Parameters
----------
name : str
Name of the dataset use. You may use `get_dataset_name`.
seed : int
Random seed.
iterator_len : int
Length of the dataset. This defines the length of one training epoch.
"""
self.name = name
self.seed = seed
self.random_state = np.random.RandomState(seed)
self.iterator_len = iterator_len
self.dataset = self.load_dataset()
def load_dataset(self):
return get_named_ground_truth_data(self.name)
def __len__(self):
return self.iterator_len
def __getitem__(self, item):
assert item < self.iterator_len
output = self.dataset.sample_observations(1, random_state=self.random_state)[0]
# Convert output to CHW from HWC
return torch.from_numpy(np.moveaxis(output, 2, 0))
def get_dataset(name=None, seed=0, iterator_len=50000):
"""
Makes a dataset.
Parameters
----------
name : str
Name of the dataset use. Defaults to the output of `get_dataset_name`.
seed : int
Random seed.
iterator_len : int
Length of the dataset. This defines the length of one training epoch.
Returns
-------
DLIBDataset
"""
name = get_dataset_name() if name is None else name
return DLIBDataset(name, seed=seed, iterator_len=iterator_len)
def get_loader(name=None, batch_size=32, seed=0, iterator_len=50000, num_workers=0,
**dataloader_kwargs):
"""
Makes a dataset and a data-loader.
Parameters
----------
name : str
Name of the dataset use. Defaults to the output of `get_dataset_name`.
batch_size : int
Batch size.
seed : int
Random seed.
iterator_len : int
Length of the dataset. This defines the length of one training epoch.
num_workers : int
Number of processes to use for multiprocessed data-loading.
dataloader_kwargs : dict
Keyword arguments for the data-loader.
Returns
-------
DataLoader
"""
name = get_dataset_name() if name is None else name
dlib_dataset = DLIBDataset(name, seed=seed, iterator_len=iterator_len)
loader = DataLoader(dlib_dataset, batch_size=batch_size, shuffle=True,
num_workers=num_workers, **dataloader_kwargs)
return loader
def test_loader():
loader = get_loader(num_workers=2)
for count, b in enumerate(loader):
print(b.shape)
# ^ prints `torch.Size([32, 3, 64, 64])` and means that multiprocessing works
if count > 5:
break
print("Success!")
if __name__ == '__main__':
pass