-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathCAESThermoVariableDef.m
246 lines (219 loc) · 8.62 KB
/
CAESThermoVariableDef.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
%% Energy Conversion Module V2.0
% air mass flow rates
m_air.comp = zeros(1,length(TT_Char));
m_air.turb = zeros(1,length(TT_Disc));
% compressor/turbine efficiency
eta.c1 = zeros(1,length(TT_Char));
eta.c2 = zeros(1,length(TT_Char));
eta.c3 = zeros(1,length(TT_Char));
eta.c4 = zeros(1,length(TT_Char));
eta.c5 = zeros(1,length(TT_Char));
eta.e1 = zeros(1,length(TT_Disc));
eta.e2 = zeros(1,length(TT_Disc));
eta.e3 = zeros(1,length(TT_Disc));
% compression and expansion ratio
beta.c1 = zeros(1,length(TT_Char));
beta.c2 = zeros(1,length(TT_Char));
beta.c3 = zeros(1,length(TT_Char));
beta.c4 = zeros(1,length(TT_Char));
beta.c5 = zeros(1,length(TT_Char));
beta.e1 = zeros(1,length(TT_Disc));
beta.e2 = zeros(1,length(TT_Disc));
beta.e3 = zeros(1,length(TT_Disc));
% inlet air temperature of compressor/turbine
T_a_in.c1 = zeros(1,length(TT_Char));
T_a_in.c2 = zeros(1,length(TT_Char));
T_a_in.c3 = zeros(1,length(TT_Char));
T_a_in.c4 = zeros(1,length(TT_Char));
T_a_in.c5 = zeros(1,length(TT_Char));
T_a_in.e1 = zeros(1,length(TT_Disc));
T_a_in.e2 = zeros(1,length(TT_Disc));
T_a_in.e3 = zeros(1,length(TT_Disc));
% outlet air temperature of compressor/turbine
T_a_out.c1 = zeros(1,length(TT_Char));
T_a_out.c2 = zeros(1,length(TT_Char));
T_a_out.c3 = zeros(1,length(TT_Char));
T_a_out.c4 = zeros(1,length(TT_Char));
T_a_out.c5 = zeros(1,length(TT_Char));
T_a_out.e1 = zeros(1,length(TT_Disc));
T_a_out.e2 = zeros(1,length(TT_Disc));
T_a_out.e3 = zeros(1,length(TT_Disc));
% inlet air pressure of compressor/turbine
p_a_in.c1 = zeros(1,length(TT_Char));
p_a_in.c2 = zeros(1,length(TT_Char));
p_a_in.c3 = zeros(1,length(TT_Char));
p_a_in.c4 = zeros(1,length(TT_Char));
p_a_in.c5 = zeros(1,length(TT_Char));
p_a_in.e1 = zeros(1,length(TT_Disc));
p_a_in.e2 = zeros(1,length(TT_Disc));
p_a_in.e3 = zeros(1,length(TT_Disc));
% outlet air pressure of compressor/turbine
p_a_out.c1 = zeros(1,length(TT_Char));
p_a_out.c2 = zeros(1,length(TT_Char));
p_a_out.c3 = zeros(1,length(TT_Char));
p_a_out.c4 = zeros(1,length(TT_Char));
p_a_out.c5 = zeros(1,length(TT_Char));
p_a_out.e1 = zeros(1,length(TT_Disc));
p_a_out.e2 = zeros(1,length(TT_Disc));
p_a_out.e3 = zeros(1,length(TT_Disc));
% power consumption/generation of compressor/turbine
W_char.c1 = zeros(1,length(TT_Char));
W_char.c2 = zeros(1,length(TT_Char));
W_char.c3 = zeros(1,length(TT_Char));
W_char.c4 = zeros(1,length(TT_Char));
W_char.c5 = zeros(1,length(TT_Char));
W_disc.e1 = zeros(1,length(TT_Disc));
W_disc.e2 = zeros(1,length(TT_Disc));
W_disc.e3 = zeros(1,length(TT_Disc));
W_char.all = zeros(1,length(TT_Char));
W_disc.all = zeros(1,length(TT_Disc));
% compessor on/off at the slide charging mode
CompOn.c1 = zeros(1,length(TT_Char));
CompOn.c2 = zeros(1,length(TT_Char));
CompOn.c3 = zeros(1,length(TT_Char));
CompOn.c4 = zeros(1,length(TT_Char));
CompOn.c5 = zeros(1,length(TT_Char));
%% Energy Transfer Module
% NTU of heat exchanger at compression/expansion side
NTU.HXC1 = zeros(1,length(TT_Char));
NTU.HXC2 = zeros(1,length(TT_Char));
NTU.HXC3 = zeros(1,length(TT_Char));
NTU.HXC4 = zeros(1,length(TT_Char));
NTU.HXC5 = zeros(1,length(TT_Char));
NTU.HXH1 = zeros(1,length(TT_Disc));
NTU.HXH2 = zeros(1,length(TT_Disc));
NTU.HXH3 = zeros(1,length(TT_Disc));
% efficiency of heat exchanger
Sigma.HXC1 = zeros(1,length(TT_Char));
Sigma.HXC2 = zeros(1,length(TT_Char));
Sigma.HXC3 = zeros(1,length(TT_Char));
Sigma.HXC4 = zeros(1,length(TT_Char));
Sigma.HXC5 = zeros(1,length(TT_Char));
Sigma.HXH1 = zeros(1,length(TT_Disc));
Sigma.HXH2 = zeros(1,length(TT_Disc));
Sigma.HXH3 = zeros(1,length(TT_Disc));
% Cmin of heat exchanger
CMin.HXC1 = zeros(1,length(TT_Char));
CMin.HXC2 = zeros(1,length(TT_Char));
CMin.HXC3 = zeros(1,length(TT_Char));
CMin.HXC4 = zeros(1,length(TT_Char));
CMin.HXC5 = zeros(1,length(TT_Char));
CMin.HXH1 = zeros(1,length(TT_Disc));
CMin.HXH2 = zeros(1,length(TT_Disc));
CMin.HXH3 = zeros(1,length(TT_Disc));
% Heat Exchange of heat exchanger
Phi.HXC1 = zeros(1,length(TT_Char));
Phi.HXC2 = zeros(1,length(TT_Char));
Phi.HXC3 = zeros(1,length(TT_Char));
Phi.HXC4 = zeros(1,length(TT_Char));
Phi.HXC5 = zeros(1,length(TT_Char));
Phi.HXH1 = zeros(1,length(TT_Disc));
Phi.HXH2 = zeros(1,length(TT_Disc));
Phi.HXH3 = zeros(1,length(TT_Disc));
% Heat Capacity Ratio of heat exchanger
C_HX.HXC1 = zeros(1,length(TT_Char));
C_HX.HXC2 = zeros(1,length(TT_Char));
C_HX.HXC3 = zeros(1,length(TT_Char));
C_HX.HXC4 = zeros(1,length(TT_Char));
C_HX.HXC5 = zeros(1,length(TT_Char));
C_HX.HXH1 = zeros(1,length(TT_Disc));
C_HX.HXH2 = zeros(1,length(TT_Disc));
C_HX.HXH3 = zeros(1,length(TT_Disc));
% Inlet air pressure of heat exchanger
p_a_in.HXC1 = zeros(1,length(TT_Char));
p_a_in.HXC2 = zeros(1,length(TT_Char));
p_a_in.HXC3 = zeros(1,length(TT_Char));
p_a_in.HXC4 = zeros(1,length(TT_Char));
p_a_in.HXC5 = zeros(1,length(TT_Char));
p_a_in.HXH1 = zeros(1,length(TT_Disc));
p_a_in.HXH2 = zeros(1,length(TT_Disc));
p_a_in.HXH3 = zeros(1,length(TT_Disc));
% outlet air pressure of heat exchanger
p_a_out.HXC1 = zeros(1,length(TT_Char));
p_a_out.HXC2 = zeros(1,length(TT_Char));
p_a_out.HXC3 = zeros(1,length(TT_Char));
p_a_out.HXC4 = zeros(1,length(TT_Char));
p_a_out.HXC5 = zeros(1,length(TT_Char));
p_a_out.HXH1 = zeros(1,length(TT_Disc));
p_a_out.HXH2 = zeros(1,length(TT_Disc));
p_a_out.HXH3 = zeros(1,length(TT_Disc));
% inlet air temperature of heat exchanger
T_a_in.HXC1 = zeros(1,length(TT_Char));
T_a_in.HXC2 = zeros(1,length(TT_Char));
T_a_in.HXC3 = zeros(1,length(TT_Char));
T_a_in.HXC4 = zeros(1,length(TT_Char));
T_a_in.HXC5 = zeros(1,length(TT_Char));
T_a_in.HXH1 = zeros(1,length(TT_Disc));
T_a_in.HXH2 = zeros(1,length(TT_Disc));
T_a_in.HXH3 = zeros(1,length(TT_Disc));
% outlet air temperature of heat exchanger
T_a_out.HXC1 = zeros(1,length(TT_Char));
T_a_out.HXC2 = zeros(1,length(TT_Char));
T_a_out.HXC3 = zeros(1,length(TT_Char));
T_a_out.HXC4 = zeros(1,length(TT_Char));
T_a_out.HXC5 = zeros(1,length(TT_Char));
T_a_out.HXH1 = zeros(1,length(TT_Disc));
T_a_out.HXH2 = zeros(1,length(TT_Disc));
T_a_out.HXH3 = zeros(1,length(TT_Disc));
% inlet HTF temperature of heat exchanger
T_HTF_in.HXC1 = zeros(1,length(TT_Char));
T_HTF_in.HXC2 = zeros(1,length(TT_Char));
T_HTF_in.HXC3 = zeros(1,length(TT_Char));
T_HTF_in.HXC4 = zeros(1,length(TT_Char));
T_HTF_in.HXC5 = zeros(1,length(TT_Char));
T_HTF_in.HXH1 = zeros(1,length(TT_Disc));
T_HTF_in.HXH2 = zeros(1,length(TT_Disc));
T_HTF_in.HXH3 = zeros(1,length(TT_Disc));
% outlet HTF temperature of heat exchanger
T_HTF_out.HXC1 = zeros(1,length(TT_Char));
T_HTF_out.HXC2 = zeros(1,length(TT_Char));
T_HTF_out.HXC3 = zeros(1,length(TT_Char));
T_HTF_out.HXC4 = zeros(1,length(TT_Char));
T_HTF_out.HXC5 = zeros(1,length(TT_Char));
T_HTF_out.HXH1 = zeros(1,length(TT_Disc));
T_HTF_out.HXH2 = zeros(1,length(TT_Disc));
T_HTF_out.HXH3 = zeros(1,length(TT_Disc));
% mass flow rates of HTF of heat exchanger
m_HTF.HXC1 = zeros(1,length(TT_Char));
m_HTF.HXC2 = zeros(1,length(TT_Char));
m_HTF.HXC3 = zeros(1,length(TT_Char));
m_HTF.HXC4 = zeros(1,length(TT_Char));
m_HTF.HXC5 = zeros(1,length(TT_Char));
m_HTF.HXH1 = zeros(1,length(TT_Disc));
m_HTF.HXH2 = zeros(1,length(TT_Disc));
m_HTF.HXH3 = zeros(1,length(TT_Disc));
% Pressure Drop factor
eta_P.HXC1 = zeros(1,length(TT_Char));
eta_P.HXC2 = zeros(1,length(TT_Char));
eta_P.HXC3 = zeros(1,length(TT_Char));
eta_P.HXC4 = zeros(1,length(TT_Char));
eta_P.HXC5 = zeros(1,length(TT_Char));
eta_P.HXH1 = zeros(1,length(TT_Disc));
eta_P.HXH2 = zeros(1,length(TT_Disc));
eta_P.HXH3 = zeros(1,length(TT_Disc));
%% Energy Storage Module
% air storage chamber
p_as_in = zeros(1,length(TT_Char));
T_as_in = zeros(1,length(TT_Char));
p_as_out = zeros(1,length(TT_Disc));
T_as_out = zeros(1,length(TT_Disc));
M_as.Char = zeros(1,length(TT_Char)); % charging process
T_as.Char = zeros(1,length(TT_Char));
P_as.Char = zeros(1,length(TT_Char));
M_as.Disc = zeros(1,length(TT_Disc)); % discharging process
T_as.Disc = zeros(1,length(TT_Disc));
P_as.Disc = zeros(1,length(TT_Disc));
P_as.Delta_Char = zeros(1,length(TT_Char)); % for G model
P_as.Delta_Disc = zeros(1,length(TT_Disc));
T_as.Delta_Char = zeros(1,length(TT_Char));
T_as.Delta_Disc = zeros(1,length(TT_Disc));
P_as_in_SP_Req = zeros(1,length(TT_Char)); % Air pressure requirement
% thermal storage tank
T_TES.Char = zeros(1,length(TT_Char));
M_TES.Char = zeros(1,length(TT_Char));
T_TES.Disc = zeros(1,length(TT_Disc));
M_TES.Disc = zeros(1,length(TT_Disc));
m_HTF.TES_in = zeros(1,length(TT_Char));
m_HTF.TES_out = zeros(1,length(TT_Disc));
T_HTF_in.TES = zeros(1,length(TT_Char));
T_HTF_out.TES = zeros(1,length(TT_Disc));