forked from xieyongliang/stable-diffusion-webui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwebui.py
1005 lines (899 loc) · 45.1 KB
/
webui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import time
import importlib
import signal
import threading
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
from fastapi import Request, status
from fastapi.encoders import jsonable_encoder
from fastapi.exceptions import RequestValidationError
from fastapi.responses import JSONResponse
import psutil
from modules import extra_networks, ui_extra_networks_checkpoints
from modules import extra_networks_hypernet, ui_extra_networks_hypernets, ui_extra_networks_textual_inversion
from modules.call_queue import wrap_queued_call, queue_lock
from modules.paths import script_path
from collections import OrderedDict
from modules import shared, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks
import modules.codeformer_model as codeformer
import modules.extras
import modules.face_restoration
import modules.gfpgan_model as gfpgan
import modules.img2img
import modules.lowvram
import modules.paths
import modules.scripts
import modules.sd_hijack
import modules.sd_models
import modules.sd_vae
import modules.txt2img
import modules.script_callbacks
import modules.ui
from modules import modelloader
from modules.shared import cmd_opts, opts, sd_model,syncLock,sync_images_lock,de_register_model,get_default_sagemaker_bucket
import modules.hypernetworks.hypernetwork
import boto3
import threading
import time
import traceback
from botocore.exceptions import ClientError
import requests
import json
import uuid
from huggingface_hub import hf_hub_download
import glob
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), 'extensions/sd-webui-controlnet'))
sys.path.append(os.path.join(os.path.dirname(__file__), 'extensions/sd_dreambooth_extension'))
if not cmd_opts.api:
from extensions.sd_dreambooth_extension.scripts.train import train_dreambooth
import requests
cache = dict()
region_name = boto3.session.Session().region_name if not cmd_opts.train else cmd_opts.region_name
s3_client = boto3.client('s3', region_name=region_name)
endpointUrl = s3_client.meta.endpoint_url
s3_client = boto3.client('s3', endpoint_url=endpointUrl, region_name=region_name)
s3_resource= boto3.resource('s3')
s3_image_path_prefix = 'stable-diffusion-webui/generated/'
if cmd_opts.server_name:
server_name = cmd_opts.server_name
else:
server_name = "0.0.0.0" if cmd_opts.listen else None
FREESPACE = 20
def initialize():
extensions.list_extensions()
localization.list_localizations(cmd_opts.localizations_dir)
if cmd_opts.ui_debug_mode:
shared.sd_upscalers = upscaler.UpscalerLanczos().scalers
modules.scripts.load_scripts()
return
modelloader.cleanup_models()
modules.sd_models.setup_model()
codeformer.setup_model(cmd_opts.codeformer_models_path)
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
shared.face_restorers.append(modules.face_restoration.FaceRestoration())
modules.scripts.load_scripts()
modelloader.load_upscalers()
modules.sd_vae.refresh_vae_list()
if not cmd_opts.pureui:
modules.sd_models.load_model()
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: shared.reload_hypernetworks()))
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
ui_extra_networks.intialize()
ui_extra_networks.register_page(ui_extra_networks_textual_inversion.ExtraNetworksPageTextualInversion())
ui_extra_networks.register_page(ui_extra_networks_hypernets.ExtraNetworksPageHypernetworks())
ui_extra_networks.register_page(ui_extra_networks_checkpoints.ExtraNetworksPageCheckpoints())
extra_networks.initialize()
extra_networks.register_extra_network(extra_networks_hypernet.ExtraNetworkHypernet())
if cmd_opts.tls_keyfile is not None and cmd_opts.tls_keyfile is not None:
try:
if not os.path.exists(cmd_opts.tls_keyfile):
print("Invalid path to TLS keyfile given")
if not os.path.exists(cmd_opts.tls_certfile):
print(f"Invalid path to TLS certfile: '{cmd_opts.tls_certfile}'")
except TypeError:
cmd_opts.tls_keyfile = cmd_opts.tls_certfile = None
print("TLS setup invalid, running webui without TLS")
else:
print("Running with TLS")
# make the program just exit at ctrl+c without waiting for anything
def sigint_handler(sig, frame):
print(f'Interrupted with signal {sig} in {frame}')
os._exit(0)
signal.signal(signal.SIGINT, sigint_handler)
def setup_cors(app):
if cmd_opts.cors_allow_origins and cmd_opts.cors_allow_origins_regex:
app.add_middleware(CORSMiddleware, allow_origins=cmd_opts.cors_allow_origins.split(','), allow_origin_regex=cmd_opts.cors_allow_origins_regex, allow_methods=['*'])
elif cmd_opts.cors_allow_origins:
app.add_middleware(CORSMiddleware, allow_origins=cmd_opts.cors_allow_origins.split(','), allow_methods=['*'])
elif cmd_opts.cors_allow_origins_regex:
app.add_middleware(CORSMiddleware, allow_origin_regex=cmd_opts.cors_allow_origins_regex, allow_methods=['*'])
def create_api(app):
from modules.api.api import Api
api = Api(app, queue_lock)
return api
def wait_on_server(demo=None):
while 1:
time.sleep(0.5)
if shared.state.need_restart:
shared.state.need_restart = False
time.sleep(0.5)
demo.close()
time.sleep(0.5)
break
def api_only():
initialize()
app = FastAPI()
setup_cors(app)
app.add_middleware(GZipMiddleware, minimum_size=1000)
api = create_api(app)
modules.script_callbacks.app_started_callback(None, app)
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request: Request, exc: RequestValidationError):
return JSONResponse(
status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
content=jsonable_encoder({"detail": exc.errors(), "body": exc.body}),
)
api.launch(server_name="0.0.0.0" if cmd_opts.listen else "127.0.0.1", port=cmd_opts.port if cmd_opts.port else 7861)
def user_auth(username, password):
inputs = {
'username': username,
'password': password
}
api_endpoint = os.environ['api_endpoint']
response = requests.post(url=f'{api_endpoint}/sd/login', json=inputs)
return response.status_code == 200
def get_bucket_and_key(s3uri):
pos = s3uri.find('/', 5)
bucket = s3uri[5 : pos]
key = s3uri[pos + 1 : ]
return bucket, key
def get_models(path, extensions):
candidates = []
models = []
for extension in extensions:
candidates = candidates + glob.glob(os.path.join(path, f'**/{extension}'), recursive=True)
for filename in sorted(candidates, key=str.lower):
if os.path.isdir(filename):
continue
models.append(filename)
return models
def check_space_s3_download(s3_client,bucket_name,s3_folder,local_folder,file,size,mode):
print(f"bucket_name:{bucket_name},s3_folder:{s3_folder},file:{file}")
if file == '' or file == None:
print('Debug log:file is empty, return')
return True
src = s3_folder + '/' + file
dist = os.path.join(local_folder, file)
os.makedirs(os.path.dirname(dist), exist_ok=True)
# Get disk usage statistics
disk_usage = psutil.disk_usage('/tmp')
freespace = disk_usage.free/(1024**3)
print(f"Total space: {disk_usage.total/(1024**3)}, Used space: {disk_usage.used/(1024**3)}, Free space: {freespace}")
if freespace - size >= FREESPACE:
try:
s3_client.download_file(bucket_name, src, dist)
#init ref cnt to 0, when the model file first time download
hash = modules.sd_models.model_hash(dist)
if mode == 'sd' :
shared.sd_models_Ref.add_models_ref('{0} [{1}]'.format(file, hash))
elif mode == 'cn':
shared.cn_models_Ref.add_models_ref('{0} [{1}]'.format(os.path.splitext(file)[0], hash))
elif mode == 'lora':
shared.lora_models_Ref.add_models_ref('{0} [{1}]'.format(os.path.splitext(file)[0], hash))
elif mode == 'vae':
shared.vae_models_Ref.add_models_ref('{0} [{1}]'.format(os.path.splitext(file)[0], hash))
print(f'download_file success:from {bucket_name}/{src} to {dist}')
except Exception as e:
print(f'download_file error: from {bucket_name}/{src} to {dist}')
print(f"An error occurred: {e}")
return False
return True
else:
return False
def free_local_disk(local_folder,size,mode):
disk_usage = psutil.disk_usage('/tmp')
freespace = disk_usage.free/(1024**3)
if freespace - size >= FREESPACE:
return
models_Ref = None
if mode == 'sd' :
models_Ref = shared.sd_models_Ref
elif mode == 'cn':
models_Ref = shared.cn_models_Ref
elif mode == 'lora':
models_Ref = shared.lora_models_Ref
elif mode == 'vae':
models_Ref = shared.vae_models_Ref
model_name,ref_cnt = models_Ref.get_least_ref_model()
print (f'shared.{mode}_models_Ref:{models_Ref.get_models_ref_dict()} -- model_name:{model_name}')
if model_name and ref_cnt:
filename = model_name[:model_name.rfind("[")]
os.remove(os.path.join(local_folder, filename))
disk_usage = psutil.disk_usage('/tmp')
freespace = disk_usage.free/(1024**3)
print(f"Remove file: {os.path.join(local_folder, filename)} now left space:{freespace}")
de_register_model(filename,mode)
else:
## if ref_cnt == 0, then delete the oldest zero_ref one
zero_ref_models = set([model[:model.rfind(" [")] for model, count in models_Ref.get_models_ref_dict().items() if count == 0])
local_files = set(os.listdir(local_folder))
# join with local
files = [(os.path.join(local_folder, file), os.path.getctime(os.path.join(local_folder, file))) for file in zero_ref_models.intersection(local_files)]
if len(files) == 0:
print(f"No files to remove in folder: {local_folder}, please remove some files in S3 bucket")
return
files.sort(key=lambda x: x[1])
oldest_file = files[0][0]
os.remove(oldest_file)
disk_usage = psutil.disk_usage('/tmp')
freespace = disk_usage.free/(1024**3)
print(f"Remove file: {oldest_file} now left space:{freespace}")
filename = os.path.basename(oldest_file)
de_register_model(filename,mode)
def list_s3_objects(s3_client,bucket_name, prefix=''):
objects = []
paginator = s3_client.get_paginator('list_objects_v2')
page_iterator = paginator.paginate(Bucket=bucket_name, Prefix=prefix)
# iterate over pages
for page in page_iterator:
# loop through objects in page
if 'Contents' in page:
for obj in page['Contents']:
_, ext = os.path.splitext(obj['Key'].lstrip('/'))
if ext in ['.pt', '.pth', '.ckpt', '.safetensors','.yaml']:
objects.append(obj)
# if there are more pages to fetch, continue
if 'NextContinuationToken' in page:
page_iterator = paginator.paginate(Bucket=bucket_name, Prefix=prefix,
ContinuationToken=page['NextContinuationToken'])
return objects
def initial_s3_download(s3_folder, local_folder,cache_dir,mode):
# Create tmp folders
os.makedirs(os.path.dirname(local_folder), exist_ok=True)
os.makedirs(os.path.dirname(cache_dir), exist_ok=True)
print(f'create dir: {os.path.dirname(local_folder)}')
print(f'create dir: {os.path.dirname(cache_dir)}')
s3_file_name = os.path.join(cache_dir,f's3_files_{mode}.json')
# Create an empty file if not exist
if os.path.isfile(s3_file_name) == False:
s3_files = {}
with open(s3_file_name, "w") as f:
json.dump(s3_files, f)
s3 = boto3.client('s3')
# List all objects in the S3 folder
s3_objects = list_s3_objects(s3_client=s3, bucket_name=shared.models_s3_bucket, prefix=s3_folder)
# only download on model at initialization
fnames_dict = {}
# if there v2 models, one root should have two files (.ckpt,.yaml)
for obj in s3_objects:
filename = obj['Key'].replace(s3_folder, '').lstrip('/')
root, ext = os.path.splitext(filename)
model = fnames_dict.get(root)
if model:
model.append(filename)
else:
fnames_dict[root] = [filename]
tmp_s3_files = {}
for obj in s3_objects:
etag = obj['ETag'].strip('"').strip("'")
size = obj['Size']/(1024**3)
filename = obj['Key'].replace(s3_folder, '').lstrip('/')
tmp_s3_files[filename] = [etag,size]
#only fetch the first model to download.
if mode == 'sd':
s3_files = {}
try:
_, file_names = next(iter(fnames_dict.items()))
for fname in file_names:
s3_files[fname] = tmp_s3_files.get(fname)
check_space_s3_download(s3,shared.models_s3_bucket, s3_folder,local_folder, fname, tmp_s3_files.get(fname)[1], mode)
register_models(local_folder,mode)
except Exception as e:
traceback.print_stack()
print(e)
print(f'-----s3_files---{s3_files}')
# save the lastest one
with open(s3_file_name, "w") as f:
json.dump(s3_files, f)
def sync_s3_folder(local_folder,cache_dir,mode):
s3 = boto3.client('s3')
def sync(mode):
# print (f'sync:{mode}')
if mode == 'sd':
s3_folder = shared.s3_folder_sd
elif mode == 'cn':
s3_folder = shared.s3_folder_cn
elif mode == 'lora':
s3_folder = shared.s3_folder_lora
elif mode == 'vae':
s3_folder = shared.s3_folder_vae
else:
s3_folder = ''
# Check and Create tmp folders
os.makedirs(os.path.dirname(local_folder), exist_ok=True)
os.makedirs(os.path.dirname(cache_dir), exist_ok=True)
s3_file_name = os.path.join(cache_dir,f's3_files_{mode}.json')
# Create an empty file if not exist
if os.path.isfile(s3_file_name) == False:
s3_files = {}
with open(s3_file_name, "w") as f:
json.dump(s3_files, f)
# List all objects in the S3 folder
s3_objects = list_s3_objects(s3_client=s3,bucket_name=shared.models_s3_bucket, prefix=s3_folder)
# Check if there are any new or deleted files
s3_files = {}
for obj in s3_objects:
etag = obj['ETag'].strip('"').strip("'")
size = obj['Size']/(1024**3)
key = obj['Key'].replace(s3_folder, '').lstrip('/')
s3_files[key] = [etag,size]
# to compared the latest s3 list with last time saved in local json,
# read it first
s3_files_local = {}
with open(s3_file_name, "r") as f:
s3_files_local = json.load(f)
# print (f's3_files:{s3_files}')
# print (f's3_files_local:{s3_files_local}')
# save the lastest one
with open(s3_file_name, "w") as f:
json.dump(s3_files, f)
mod_files = set()
new_files = set([key for key in s3_files if key not in s3_files_local])
del_files = set([key for key in s3_files_local if key not in s3_files])
registerflag = False
#compare etag changes
for key in set(s3_files_local.keys()).intersection(s3_files.keys()):
local_etag = s3_files_local.get(key)[0]
if local_etag and local_etag != s3_files[key][0]:
mod_files.add(key)
# Delete vanished files from local folder
for file in del_files:
if os.path.isfile(os.path.join(local_folder, file)):
os.remove(os.path.join(local_folder, file))
print(f'remove file {os.path.join(local_folder, file)}')
de_register_model(file,mode)
# Add new files
for file in new_files.union(mod_files):
registerflag = True
retry = 3 ##retry limit times to prevent dead loop in case other folders is empty
while retry:
ret = check_space_s3_download(s3,shared.models_s3_bucket, s3_folder,local_folder, file, s3_files[file][1], mode)
#if the space is not enough free
if ret:
retry = 0
else:
free_local_disk(local_folder,s3_files[file][1],mode)
retry = retry - 1
if registerflag:
register_models(local_folder,mode)
if mode == 'sd':
#Refreshing Model List
modules.sd_models.list_models()
# cn models sync not supported temporally due to an unfixed bug
elif mode == 'cn':
modules.script_callbacks.update_cn_models_callback()
elif mode == 'lora':
print('update lora')
elif mode == 'vae':
modules.sd_vae.refresh_vae_list()
# Create a thread function to keep syncing with the S3 folder
def sync_thread(mode):
while True:
syncLock.acquire()
sync(mode)
syncLock.release()
time.sleep(30)
thread = threading.Thread(target=sync_thread,args=(mode,))
thread.start()
print (f'{mode}_sync thread start')
return thread
def register_models(models_dir,mode):
if mode == 'sd':
register_sd_models(models_dir)
elif mode == 'cn':
register_cn_models(models_dir)
elif mode == 'lora':
register_lora_models(models_dir)
elif mode == 'vae':
register_vae_models(models_dir)
def register_vae_models(vae_models_dir):
print ('---register_vae_models()- to be impletemented---')
if 'endpoint_name' in os.environ:
items = []
params = {
'module': 'VAE'
}
api_endpoint = os.environ['api_endpoint']
endpoint_name = os.environ['endpoint_name']
for file in get_models(vae_models_dir, ['*.pt', '*.ckpt', '*.safetensors']):
item = {}
item['model_name'] = os.path.basename(file)
item['path'] = file
item['endpoint_name'] = endpoint_name
items.append(item)
inputs = {
'items': items
}
if api_endpoint.startswith('http://') or api_endpoint.startswith('https://'):
response = requests.post(url=f'{api_endpoint}/sd/models', json=inputs, params=params)
print(response)
def register_lora_models(lora_models_dir):
print ('---register_lora_models()----')
if 'endpoint_name' in os.environ:
items = []
params = {
'module': 'Lora'
}
api_endpoint = os.environ['api_endpoint']
endpoint_name = os.environ['endpoint_name']
for file in get_models(lora_models_dir, ['*.pt', '*.ckpt', '*.safetensors']):
hash = modules.sd_models.model_hash(os.path.join(lora_models_dir, file))
item = {}
item['model_name'] = os.path.basename(file)
item['title'] = '{0} [{1}]'.format(os.path.splitext(os.path.basename(file))[0], hash)
item['endpoint_name'] = endpoint_name
items.append(item)
inputs = {
'items': items
}
if api_endpoint.startswith('http://') or api_endpoint.startswith('https://'):
response = requests.post(url=f'{api_endpoint}/sd/models', json=inputs, params=params)
print(response)
def register_sd_models(sd_models_dir):
print ('---register_sd_models()----')
if 'endpoint_name' in os.environ:
items = []
api_endpoint = os.environ['api_endpoint']
endpoint_name = os.environ['endpoint_name']
for file in get_models(sd_models_dir, ['*.ckpt', '*.safetensors']):
hash = modules.sd_models.model_hash(file)
item = {}
item['model_name'] = file.replace("/tmp/models/Stable-diffusion/",'')
item['hash'] = hash
item['filename'] = file
item['config'] = '/opt/ml/code/stable-diffusion-webui/repositories/stable-diffusion/configs/stable-diffusion/v1-inference.yaml'
item['title'] = '{0} [{1}]'.format(file.replace("/tmp/models/Stable-diffusion/",''), hash)
item['endpoint_name'] = endpoint_name
items.append(item)
inputs = {
'items': items
}
params = {
'module': 'Stable-diffusion'
}
if api_endpoint.startswith('http://') or api_endpoint.startswith('https://'):
response = requests.post(url=f'{api_endpoint}/sd/models', json=inputs, params=params)
print(response)
def register_cn_models(cn_models_dir):
print ('---register_cn_models()----')
if 'endpoint_name' in os.environ:
items = []
api_endpoint = os.environ['api_endpoint']
endpoint_name = os.environ['endpoint_name']
params = {
'module': 'ControlNet'
}
for file in get_models(cn_models_dir, ['*.pt', '*.pth', '*.ckpt', '*.safetensors']):
hash = modules.sd_models.model_hash(os.path.join(cn_models_dir, file))
item = {}
item['model_name'] = os.path.basename(file)
item['title'] = '{0} [{1}]'.format(os.path.splitext(os.path.basename(file))[0], hash)
item['endpoint_name'] = endpoint_name
items.append(item)
inputs = {
'items': items
}
if api_endpoint.startswith('http://') or api_endpoint.startswith('https://'):
response = requests.post(url=f'{api_endpoint}/sd/models', json=inputs, params=params)
print(response)
def sync_images_from_s3():
# Create a thread function to keep syncing with the S3 folder
bucket_name = get_default_sagemaker_bucket().replace('s3://','')
def sync_thread(bucket_name):
while True:
sync_images_lock.acquire()
shared.download_images_for_ui(bucket_name)
sync_images_lock.release()
time.sleep(10)
thread = threading.Thread(target=sync_thread,args=(bucket_name,))
thread.start()
print (f'{bucket_name} images sync thread start ')
def webui():
launch_api = cmd_opts.api
if launch_api:
models_config_s3uri = os.environ.get('models_config_s3uri', None)
if models_config_s3uri:
bucket, key = get_bucket_and_key(models_config_s3uri)
s3_object = s3_client.get_object(Bucket=bucket, Key=key)
bytes = s3_object["Body"].read()
payload = bytes.decode('utf8')
huggingface_models = json.loads(payload).get('huggingface_models', None)
s3_models = json.loads(payload).get('s3_models', None)
http_models = json.loads(payload).get('http_models', None)
else:
huggingface_models = os.environ.get('huggingface_models', None)
huggingface_models = json.loads(huggingface_models) if huggingface_models else None
s3_models = os.environ.get('s3_models', None)
s3_models = json.loads(s3_models) if s3_models else None
http_models = os.environ.get('http_models', None)
http_models = json.loads(http_models) if http_models else None
if huggingface_models:
for huggingface_model in huggingface_models:
repo_id = huggingface_model['repo_id']
filename = huggingface_model['filename']
name = huggingface_model['name']
hf_hub_download(
repo_id=repo_id,
filename=filename,
local_dir=f'/tmp/models/{name}',
cache_dir='/tmp/cache/huggingface'
)
if s3_models:
for s3_model in s3_models:
uri = s3_model['uri']
name = s3_model['name']
shared.s3_download(uri, f'/tmp/models/{name}')
if http_models:
for http_model in http_models:
uri = http_model['uri']
filename = http_model['filename']
name = http_model['name']
shared.http_download(uri, f'/tmp/models/{name}/{filename}')
## auto reload new models from s3 add by River
if not cmd_opts.pureui and not cmd_opts.train:
print(os.system('df -h'))
sd_models_tmp_dir = f"{shared.tmp_models_dir}/Stable-diffusion/"
cn_models_tmp_dir = f"{shared.tmp_models_dir}/ControlNet/"
lora_models_tmp_dir = f"{shared.tmp_models_dir}/Lora/"
vae_models_tmp_dir = f"{shared.tmp_models_dir}/VAE/"
cache_dir = f"{shared.tmp_cache_dir}/"
session = boto3.Session()
region_name = session.region_name
sts_client = session.client('sts')
account_id = sts_client.get_caller_identity()['Account']
sg_s3_bucket = f"sagemaker-{region_name}-{account_id}"
if not shared.models_s3_bucket:
shared.models_s3_bucket = os.environ['sg_default_bucket'] if os.environ.get('sg_default_bucket') else sg_s3_bucket
shared.s3_folder_sd = "stable-diffusion-webui/models/Stable-diffusion"
shared.s3_folder_cn = "stable-diffusion-webui/models/ControlNet"
shared.s3_folder_lora = "stable-diffusion-webui/models/Lora"
shared.s3_folder_vae = "stable-diffusion-webui/models/VAE"
#only download the cn models and the first sd model from default bucket, to accerlate the startup time
initial_s3_download(shared.s3_folder_sd,sd_models_tmp_dir,cache_dir,'sd')
sync_s3_folder(vae_models_tmp_dir,cache_dir,'vae')
sync_s3_folder(sd_models_tmp_dir,cache_dir,'sd')
sync_s3_folder(cn_models_tmp_dir,cache_dir,'cn')
sync_s3_folder(lora_models_tmp_dir,cache_dir,'lora')
## end
initialize()
while 1:
if shared.opts.clean_temp_dir_at_start:
ui_tempdir.cleanup_tmpdr()
modules.script_callbacks.before_ui_callback()
shared.demo = modules.ui.create_ui()
if cmd_opts.pureui:
sync_images_from_s3()
app, local_url, share_url = shared.demo.queue(concurrency_count=5, max_size=20).launch(
share=cmd_opts.share,
server_name=server_name,
server_port=cmd_opts.port,
ssl_keyfile=cmd_opts.tls_keyfile,
ssl_certfile=cmd_opts.tls_certfile,
debug=cmd_opts.gradio_debug,
auth=user_auth,
inbrowser=cmd_opts.autolaunch,
prevent_thread_lock=True
)
# after initial launch, disable --autolaunch for subsequent restarts
cmd_opts.autolaunch = False
# gradio uses a very open CORS policy via app.user_middleware, which makes it possible for
# an attacker to trick the user into opening a malicious HTML page, which makes a request to the
# running web ui and do whatever the attcker wants, including installing an extension and
# runnnig its code. We disable this here. Suggested by RyotaK.
app.user_middleware = [x for x in app.user_middleware if x.cls.__name__ != 'CORSMiddleware']
setup_cors(app)
app.add_middleware(GZipMiddleware, minimum_size=1000)
modules.progress.setup_progress_api(app)
if launch_api:
create_api(app)
cmd_sd_models_path = cmd_opts.ckpt_dir
sd_models_dir = os.path.join(shared.models_path, "Stable-diffusion")
if cmd_sd_models_path is not None:
sd_models_dir = cmd_sd_models_path
cmd_controlnet_models_path = cmd_opts.controlnet_dir
cn_models_dir = os.path.join(shared.models_path, "ControlNet")
if cmd_controlnet_models_path is not None:
cn_models_dir = cmd_controlnet_models_path
cmd_lora_models_path = cmd_opts.lora_dir
lora_models_dir = os.path.join(shared.models_path, "Lora")
if cmd_lora_models_path is not None:
lora_models_dir = cmd_lora_models_path
cmd_vae_models_path = cmd_opts.vae_path
vae_models_dir = os.path.join(shared.models_path, "VAE")
if cmd_vae_models_path is not None:
vae_models_dir = cmd_vae_models_path
register_sd_models(sd_models_dir)
register_cn_models(cn_models_dir)
register_lora_models(lora_models_dir)
register_vae_models(vae_models_dir)
ui_extra_networks.add_pages_to_demo(app)
modules.script_callbacks.app_started_callback(shared.demo, app)
wait_on_server(shared.demo)
sd_samplers.set_samplers()
print('Reloading extensions')
extensions.list_extensions()
localization.list_localizations(cmd_opts.localizations_dir)
print('Reloading custom scripts')
modules.scripts.reload_scripts()
modelloader.load_upscalers()
print('Reloading modules: modules.ui')
importlib.reload(modules.ui)
print('Refreshing Model List')
modules.sd_models.list_models()
print('Restarting Gradio')
ui_extra_networks.intialize()
ui_extra_networks.register_page(ui_extra_networks_textual_inversion.ExtraNetworksPageTextualInversion())
ui_extra_networks.register_page(ui_extra_networks_hypernets.ExtraNetworksPageHypernetworks())
ui_extra_networks.register_page(ui_extra_networks_checkpoints.ExtraNetworksPageCheckpoints())
extra_networks.initialize()
extra_networks.register_extra_network(extra_networks_hypernet.ExtraNetworkHypernet())
if cmd_opts.train:
def train():
if cmd_opts.model_name != '':
for huggingface_model in shared.huggingface_models:
repo_id = huggingface_model['repo_id']
filename = huggingface_model['filename']
if filename == cmd_opts.model_name:
hf_hub_download(
repo_id=repo_id,
filename=filename,
local_dir='/opt/ml/input/data/models',
cache_dir='/opt/ml/input/data/models'
)
if filename in ['v2-1_768-ema-pruned.ckpt', 'v2-1_768-nonema-pruned.ckpt', '768-v-ema.ckpt', '']:
name = os.path.splitext(filename)[0]
shared.http_download(
'https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml',
f'/opt/ml/input/data/models/{name}.yaml'
)
initialize()
train_task = cmd_opts.train_task
train_args = json.loads(cmd_opts.train_args)
embeddings_s3uri = cmd_opts.embeddings_s3uri
hypernetwork_s3uri = cmd_opts.hypernetwork_s3uri
sd_models_s3uri = cmd_opts.sd_models_s3uri
db_models_s3uri = cmd_opts.db_models_s3uri
lora_models_s3uri = cmd_opts.lora_models_s3uri
api_endpoint = cmd_opts.api_endpoint
username = cmd_opts.username
default_options = opts.data
if username != '' and train_task in ['embedding', 'hypernetwork']:
inputs = {
'action': 'get',
'username': username
}
response = requests.post(url=f'{api_endpoint}/sd/user', json=inputs)
if response.status_code == 200 and response.text != '':
data = json.loads(response.text)
try:
opts.data = json.loads(data['options'])
except Exception as e:
print(e)
modules.sd_models.load_model()
if train_task == 'embedding':
name = train_args['embedding_settings']['name']
nvpt = train_args['embedding_settings']['nvpt']
overwrite_old = train_args['embedding_settings']['overwrite_old']
initialization_text = train_args['embedding_settings']['initialization_text']
modules.textual_inversion.textual_inversion.create_embedding(
name,
nvpt,
overwrite_old,
init_text=initialization_text
)
if not cmd_opts.pureui:
modules.sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
process_src = '/opt/ml/input/data/images'
process_dst = str(uuid.uuid4())
process_width = train_args['images_preprocessing_settings']['process_width']
process_height = train_args['images_preprocessing_settings']['process_height']
preprocess_txt_action = train_args['images_preprocessing_settings']['preprocess_txt_action']
process_flip = train_args['images_preprocessing_settings']['process_flip']
process_split = train_args['images_preprocessing_settings']['process_split']
process_caption = train_args['images_preprocessing_settings']['process_caption']
process_caption_deepbooru = train_args['images_preprocessing_settings']['process_caption_deepbooru']
process_split_threshold = train_args['images_preprocessing_settings']['process_split_threshold']
process_overlap_ratio = train_args['images_preprocessing_settings']['process_overlap_ratio']
process_focal_crop = train_args['images_preprocessing_settings']['process_focal_crop']
process_focal_crop_face_weight = train_args['images_preprocessing_settings']['process_focal_crop_face_weight']
process_focal_crop_entropy_weight = train_args['images_preprocessing_settings']['process_focal_crop_entropy_weight']
process_focal_crop_edges_weight = train_args['images_preprocessing_settings']['process_focal_crop_debug']
process_focal_crop_debug = train_args['images_preprocessing_settings']['process_focal_crop_debug']
modules.textual_inversion.preprocess.preprocess(
process_src,
process_dst,
process_width,
process_height,
preprocess_txt_action,
process_flip,
process_split,
process_caption,
process_caption_deepbooru,
process_split_threshold,
process_overlap_ratio,
process_focal_crop,
process_focal_crop_face_weight,
process_focal_crop_entropy_weight,
process_focal_crop_edges_weight,
process_focal_crop_debug,
)
train_embedding_name = name
learn_rate = train_args['train_embedding_settings']['learn_rate']
batch_size = train_args['train_embedding_settings']['batch_size']
gradient_step = train_args['train_embedding_settings']['gradient_step']
data_root = process_dst
log_directory = 'textual_inversion'
training_width = train_args['train_embedding_settings']['training_width']
training_height = train_args['train_embedding_settings']['training_height']
steps = train_args['train_embedding_settings']['steps']
shuffle_tags = train_args['train_embedding_settings']['shuffle_tags']
tag_drop_out = train_args['train_embedding_settings']['tag_drop_out']
latent_sampling_method = train_args['train_embedding_settings']['latent_sampling_method']
create_image_every = train_args['train_embedding_settings']['create_image_every']
save_embedding_every = train_args['train_embedding_settings']['save_embedding_every']
template_file = os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")
save_image_with_stored_embedding = train_args['train_embedding_settings']['save_image_with_stored_embedding']
preview_from_txt2img = train_args['train_embedding_settings']['preview_from_txt2img']
txt2img_preview_params = train_args['train_embedding_settings']['txt2img_preview_params']
_, filename = modules.textual_inversion.textual_inversion.train_embedding(
train_embedding_name,
learn_rate,
batch_size,
gradient_step,
data_root,
log_directory,
training_width,
training_height,
steps,
shuffle_tags,
tag_drop_out,
latent_sampling_method,
create_image_every,
save_embedding_every,
template_file,
save_image_with_stored_embedding,
preview_from_txt2img,
*txt2img_preview_params
)
try:
shared.upload_s3files(
embeddings_s3uri,
os.path.join(cmd_opts.embeddings_dir, '{0}.pt'.format(train_embedding_name))
)
except Exception as e:
traceback.print_exc()
print(e)
elif train_task == 'hypernetwork':
name = train_args['hypernetwork_settings']['name']
enable_sizes = train_args['hypernetwork_settings']['enable_sizes']
overwrite_old = train_args['hypernetwork_settings']['overwrite_old']
layer_structure = train_args['hypernetwork_settings']['layer_structure'] if 'layer_structure' in train_args['hypernetwork_settings'] else None
activation_func = train_args['hypernetwork_settings']['activation_func'] if 'activation_func' in train_args['hypernetwork_settings'] else None
weight_init = train_args['hypernetwork_settings']['weight_init'] if 'weight_init' in train_args['hypernetwork_settings'] else None
add_layer_norm = train_args['hypernetwork_settings']['add_layer_norm'] if 'add_layer_norm' in train_args['hypernetwork_settings'] else False
use_dropout = train_args['hypernetwork_settings']['use_dropout'] if 'use_dropout' in train_args['hypernetwork_settings'] else False
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
fn = os.path.join(cmd_opts.hypernetwork_dir, f"{name}.pt")
if not overwrite_old:
assert not os.path.exists(fn), f"file {fn} already exists"
if type(layer_structure) == str:
layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
name=name,
enable_sizes=[int(x) for x in enable_sizes],
layer_structure=layer_structure,
activation_func=activation_func,
weight_init=weight_init,
add_layer_norm=add_layer_norm,
use_dropout=use_dropout,
)
hypernet.save(fn)
shared.hypernetworks = modules.hypernetworks.hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
process_src = '/opt/ml/input/data/images'
process_dst = str(uuid.uuid4())
process_width = train_args['images_preprocessing_settings']['process_width']
process_height = train_args['images_preprocessing_settings']['process_height']
preprocess_txt_action = train_args['images_preprocessing_settings']['preprocess_txt_action']
process_flip = train_args['images_preprocessing_settings']['process_flip']
process_split = train_args['images_preprocessing_settings']['process_split']
process_caption = train_args['images_preprocessing_settings']['process_caption']
process_caption_deepbooru = train_args['images_preprocessing_settings']['process_caption_deepbooru']
process_split_threshold = train_args['images_preprocessing_settings']['process_split_threshold']
process_overlap_ratio = train_args['images_preprocessing_settings']['process_overlap_ratio']
process_focal_crop = train_args['images_preprocessing_settings']['process_focal_crop']
process_focal_crop_face_weight = train_args['images_preprocessing_settings']['process_focal_crop_face_weight']
process_focal_crop_entropy_weight = train_args['images_preprocessing_settings']['process_focal_crop_entropy_weight']
process_focal_crop_edges_weight = train_args['images_preprocessing_settings']['process_focal_crop_debug']
process_focal_crop_debug = train_args['images_preprocessing_settings']['process_focal_crop_debug']
modules.textual_inversion.preprocess.preprocess(
process_src,
process_dst,
process_width,
process_height,
preprocess_txt_action,
process_flip,
process_split,
process_caption,
process_caption_deepbooru,
process_split_threshold,
process_overlap_ratio,
process_focal_crop,
process_focal_crop_face_weight,
process_focal_crop_entropy_weight,
process_focal_crop_edges_weight,
process_focal_crop_debug,
)
train_hypernetwork_name = name
learn_rate = train_args['train_hypernetwork_settings']['learn_rate']
batch_size = train_args['train_hypernetwork_settings']['batch_size']
gradient_step = train_args['train_hypernetwork_settings']['gradient_step']
dataset_directory = process_dst
log_directory = 'textual_inversion'
training_width = train_args['train_hypernetwork_settings']['training_width']
training_height = train_args['train_hypernetwork_settings']['training_height']
steps = train_args['train_hypernetwork_settings']['steps']
shuffle_tags = train_args['train_hypernetwork_settings']['shuffle_tags']
tag_drop_out = train_args['train_hypernetwork_settings']['tag_drop_out']
latent_sampling_method = train_args['train_hypernetwork_settings']['latent_sampling_method']
create_image_every = train_args['train_hypernetwork_settings']['create_image_every']
save_hypernetwork_every = train_args['train_hypernetwork_settings']['save_embedding_every']
template_file = os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")
save_image_with_stored_embedding = train_args['train_hypernetwork_settings']['save_image_with_stored_embedding']
preview_from_txt2img = train_args['train_hypernetwork_settings']['preview_from_txt2img']
txt2img_preview_params = train_args['train_hypernetwork_settings']['txt2img_preview_params']
_, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(
train_hypernetwork_name,
learn_rate,
batch_size,
gradient_step,
dataset_directory,
log_directory,
training_width,
training_height,
steps,
shuffle_tags,
tag_drop_out,
latent_sampling_method,
create_image_every,
save_hypernetwork_every,
template_file,
preview_from_txt2img,
*txt2img_preview_params
)
try:
shared.upload_s3files(
hypernetwork_s3uri,
os.path.join(cmd_opts.hypernetwork_dir, '{0}.pt'.format(train_hypernetwork_name))
)
except Exception as e:
traceback.print_exc()
print(e)
elif train_task == 'dreambooth':
train_dreambooth(api_endpoint, train_args, sd_models_s3uri, db_models_s3uri, lora_models_s3uri, username)
else:
print('Incorrect training task')
exit(-1)
if __name__ == "__main__":
if cmd_opts.train: