-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathMapYourCity_ExampleTest.py
598 lines (561 loc) · 23.4 KB
/
MapYourCity_ExampleTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
#!/usr/bin/env python
# coding: utf-8
# Example Test Model for the MapYourCity dataset
"""
ABOUT SCRIPT:
This file creates an example Test Model for the validation and test sets using PyTorch
This code is generated by Nikolaos Dionelis @ESA
LAST EDITED: 05/02/2024
"""
# Python library imports
import imageio.v2 as io
import matplotlib.pyplot as plt
import torchvision
import random
import torchvision.transforms as T
import os
import shutil
from PIL import Image
from torchvision import transforms, datasets
import numpy as np
from torch.utils.data import Dataset
from sklearn.preprocessing import LabelEncoder
import torch
from torchsummary import summary
from tqdm import tqdm
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import pandas as pd
import rasterio
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
import seaborn as sn
# The main lines in this script are: 546 and 585
# To test: torch.save(model.state_dict(), './modelB.pt')
# We define the Folder Dataset Path
FOLDER = '/Data/ndionelis/StreetDataset/'
FOLDER = '/Data/ndionelis/StreetDataset/'
MAINFOLDER = '/Data/ndionelis/'
#NUMWORKERS = 6
NUMWORKERS = 0
#BATCH_SIZE = 256
BATCH_SIZE = 32
#epochs = 200
epochs = 100
SEED = random.randint(1, 10000)
print('The random seed is: ' + str(SEED) + '.')
torch.cuda.empty_cache()
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
def get_random_pos(img, window_shape):
w, h = window_shape
W, H = img.shape[-2:]
x1 = random.randint(0, W - w - 1)
x2 = x1 + w
y1 = random.randint(0, H - h - 1)
y2 = y1 + h
return x1, x2, y1, y2
WINDOW_SIZE = (600, 600)
# image1 = torchvision.io.read_image(FOLDER+'0/0_00_311059203.jpg')
# x1, x2, y1, y2 = get_random_pos(image1, WINDOW_SIZE)
# image1 = image1[:, x1:x2,y1:y2]
# plt.imshow(image1.permute(1, 2, 0))
data_transforms = {
'train': transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
]),
'val': transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
]),
'test': transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
]),
}
data_dir = MAINFOLDER + 'TheNewDataset'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val', 'test']}
train_dataset = image_datasets['train']
valid_dataset = image_datasets['test']
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=BATCH_SIZE,
shuffle=True, num_workers=NUMWORKERS)
for x in ['train', 'val', 'test']}
train_dataloader = dataloaders['train']
valid_dataloader = dataloaders['test']
labels = np.array(dataloaders['train'].dataset.targets)
lb = LabelEncoder()
labels = lb.fit_transform(labels)
print(f"Total Number of Classes: {len(lb.classes_)}")
device = torch.device("cuda:0")
print('Device: ' + str(device))
import torchvision.transforms.functional as fn
augmentation_train_in = {
transforms.Compose([
transforms.ToTensor(),
]),
}
dataloader_kwargs = {'num_workers': 0}
# We use train_loader and test_loader
# Define paths to data
input_path = "/Data/ndionelis/building-age-dataset/"
train_path = input_path + "train/data/"
test_path = input_path + "test/data/"
test_df = pd.read_csv(input_path + "test/test-set.csv")
train_df = pd.read_csv(input_path + "train/train-set.csv")
train_df.head()
test_df.head()
names_data = os.listdir(train_path) # to not load all data in a single tensor, load only the names
length_names = len(names_data)
perm = torch.randperm(length_names)
#idx = perm[:round(0.8*length_names)] # draw round(0.8*length_names) samples
#torch.save(idx, 'indexForTrainVal.pt')
idx = torch.load('indexForTrainVal.pt')
names_data = np.array(names_data)
idx = idx.numpy()
training_data = names_data[idx]
mask = np.ones(names_data.size, dtype=bool)
mask[idx] = False
test_data = names_data[mask]
#from utils import get_activation, get_normalization, SE_Block
class SE_Block(nn.Module):
def __init__(self, channels, reduction=16, activation="relu"):
super().__init__()
self.reduction = reduction
self.squeeze = nn.AdaptiveAvgPool2d(1)
self.excitation = nn.Sequential(
nn.Linear(channels, channels // self.reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channels // self.reduction, channels, bias=False),
nn.Sigmoid()
)
def forward(self, x):
bs, c, _, _ = x.shape
y = self.squeeze(x).view(bs, c)
y = self.excitation(y).view(bs, c, 1, 1)
return x * y.expand_as(x)
def get_activation(activation_name):
if activation_name == "relu":
return nn.ReLU6(inplace=True)
elif isinstance(activation_name, torch.nn.modules.activation.ReLU6):
return activation_name
elif activation_name == "gelu":
return nn.GELU()
elif isinstance(activation_name, torch.nn.modules.activation.GELU):
return activation_name
elif activation_name == "leaky_relu":
return nn.LeakyReLU(inplace=True)
elif isinstance(activation_name, torch.nn.modules.activation.LeakyReLU):
return activation_name
elif activation_name == "prelu":
return nn.PReLU()
elif isinstance(activation_name, torch.nn.modules.activation.PReLU):
return activation_name
elif activation_name == "selu":
return nn.SELU(inplace=True)
elif isinstance(activation_name, torch.nn.modules.activation.SELU):
return activation_name
elif activation_name == "sigmoid":
return nn.Sigmoid()
elif isinstance(activation_name, torch.nn.modules.activation.Sigmoid):
return activation_name
elif activation_name == "tanh":
return nn.Tanh()
elif isinstance(activation_name, torch.nn.modules.activation.Tanh):
return activation_name
elif activation_name == "mish":
return nn.Mish()
elif isinstance(activation_name, torch.nn.modules.activation.Mish):
return activation_name
else:
raise ValueError(f"activation must be one of leaky_relu, prelu, selu, gelu, sigmoid, tanh, relu. Got: {activation_name}")
def get_normalization(normalization_name, num_channels, num_groups=32, dims=2):
if normalization_name == "batch":
if dims == 1:
return nn.BatchNorm1d(num_channels)
elif dims == 2:
return nn.BatchNorm2d(num_channels)
elif dims == 3:
return nn.BatchNorm3d(num_channels)
elif normalization_name == "instance":
if dims == 1:
return nn.InstanceNorm1d(num_channels)
elif dims == 2:
return nn.InstanceNorm2d(num_channels)
elif dims == 3:
return nn.InstanceNorm3d(num_channels)
elif normalization_name == "layer":
return nn.LayerNorm(num_channels)
elif normalization_name == "group":
return nn.GroupNorm(num_groups=num_groups, num_channels=num_channels)
elif normalization_name == "bcn":
if dims == 1:
return nn.Sequential(
nn.BatchNorm1d(num_channels),
nn.GroupNorm(1, num_channels)
)
elif dims == 2:
return nn.Sequential(
nn.BatchNorm2d(num_channels),
nn.GroupNorm(1, num_channels)
)
elif dims == 3:
return nn.Sequential(
nn.BatchNorm3d(num_channels),
nn.GroupNorm(1, num_channels)
)
elif normalization_name == "none":
return nn.Identity()
else:
raise ValueError(f"normalization must be one of batch, instance, layer, group, none. Got: {normalization_name}")
class CoreCNNBlock(nn.Module):
def __init__(self, in_channels, out_channels, *, norm="batch", activation="relu", padding="same", residual=True):
super(CoreCNNBlock, self).__init__()
self.activation = get_activation(activation)
self.residual = residual
self.padding = padding
self.in_channels = in_channels
self.out_channels = out_channels
self.squeeze = SE_Block(self.out_channels)
self.match_channels = nn.Identity()
if in_channels != out_channels:
self.match_channels = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0, bias=False),
get_normalization(norm, out_channels),
)
self.conv1 = nn.Conv2d(self.in_channels, self.out_channels, 1, padding=0)
self.norm1 = get_normalization(norm, self.out_channels)
self.conv2 = nn.Conv2d(self.out_channels, self.out_channels, 3, padding=self.padding, groups=self.out_channels)
self.norm2 = get_normalization(norm, self.out_channels)
self.conv3 = nn.Conv2d(self.out_channels, self.out_channels, 3, padding=self.padding, groups=1)
self.norm3 = get_normalization(norm, self.out_channels)
def forward(self, x):
identity = x
x = self.activation(self.norm1(self.conv1(x)))
x = self.activation(self.norm2(self.conv2(x)))
x = self.norm3(self.conv3(x))
x = x * self.squeeze(x)
if self.residual:
x = x + self.match_channels(identity)
x = self.activation(x)
return x
class CoreEncoderBlock(nn.Module):
def __init__(self, depth, in_channels, out_channels, norm="batch", activation="relu", padding="same"):
super(CoreEncoderBlock, self).__init__()
self.depth = depth
self.in_channels = in_channels
self.out_channels = out_channels
self.activation = activation
self.norm = norm
self.padding = padding
self.blocks = []
for i in range(self.depth):
_in_channels = self.in_channels if i == 0 else self.out_channels
block = CoreCNNBlock(_in_channels, self.out_channels, norm=self.norm, activation=self.activation, padding=self.padding)
self.blocks.append(block)
self.blocks = nn.Sequential(*self.blocks)
self.downsample = nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, x):
for i in range(self.depth):
x = self.blocks[i](x)
before_downsample = x
x = self.downsample(x)
return x, before_downsample
class CoreAttentionBlock(nn.Module):
def __init__(self,
lower_channels,
higher_channels, *,
norm="batch",
activation="relu",
padding="same",
):
super(CoreAttentionBlock, self).__init__()
self.lower_channels = lower_channels
self.higher_channels = higher_channels
self.activation = get_activation(activation)
self.norm = norm
self.padding = padding
self.expansion = 4
self.reduction = 4
if self.lower_channels != self.higher_channels:
self.match = nn.Sequential(
nn.Conv2d(self.higher_channels, self.lower_channels, kernel_size=1, padding=0, bias=False),
get_normalization(self.norm, self.lower_channels),
)
self.compress = nn.Conv2d(self.lower_channels, 1, kernel_size=1, padding=0)
self.sigmoid = nn.Sigmoid()
self.attn_c_pool = nn.AdaptiveAvgPool2d(self.reduction)
self.attn_c_reduction = nn.Linear(self.lower_channels * (self.reduction ** 2), self.lower_channels * self.expansion)
self.attn_c_extention = nn.Linear(self.lower_channels * self.expansion, self.lower_channels)
def forward(self, x, skip):
if x.size(1) != skip.size(1):
x = self.match(x)
x = x + skip
x = self.activation(x)
attn_spatial = self.compress(x)
attn_spatial = self.sigmoid(attn_spatial)
attn_channel = self.attn_c_pool(x)
attn_channel = attn_channel.reshape(attn_channel.size(0), -1)
attn_channel = self.attn_c_reduction(attn_channel)
attn_channel = self.activation(attn_channel)
attn_channel = self.attn_c_extention(attn_channel)
attn_channel = attn_channel.reshape(x.size(0), x.size(1), 1, 1)
attn_channel = self.sigmoid(attn_channel)
return attn_spatial, attn_channel
class CoreDecoderBlock(nn.Module):
def __init__(self, depth, in_channels, out_channels, *, norm="batch", activation="relu", padding="same"):
super(CoreDecoderBlock, self).__init__()
self.depth = depth
self.in_channels = in_channels
self.out_channels = out_channels
self.activation_blocks = activation
self.activation = get_activation(activation)
self.norm = norm
self.padding = padding
self.upsample = nn.UpsamplingBilinear2d(scale_factor=2)
self.match_channels = CoreCNNBlock(self.in_channels * 2, self.out_channels, norm=self.norm, activation=self.activation_blocks, padding=self.padding)
self.attention = CoreAttentionBlock(self.in_channels, self.in_channels, norm=self.norm, activation=self.activation_blocks, padding=self.padding)
self.blocks = []
for _ in range(self.depth):
block = CoreCNNBlock(self.out_channels, self.out_channels, norm=self.norm, activation=self.activation_blocks, padding=self.padding)
self.blocks.append(block)
self.blocks = nn.Sequential(*self.blocks)
def forward(self, x, skip):
x = self.upsample(x)
attn_s, attn_c = self.attention(x, skip)
x = torch.cat([x, (skip * attn_s) + (skip + attn_c)], dim=1)
x = self.match_channels(x)
for i in range(self.depth):
x = self.blocks[i](x)
return x
class CoreUnet(nn.Module):
def __init__(self, *,
input_dim=10,
output_dim=1,
depths=None,
dims=None,
activation="relu",
norm="batch",
padding="same",
):
super(CoreUnet, self).__init__()
self.depths = [3, 3, 9, 3] if depths is None else depths
self.dims = [96, 192, 384, 768] if dims is None else dims
self.output_dim = output_dim
self.input_dim = input_dim
self.activation = activation
self.norm = norm
self.padding = padding
self.dims = [v // 2 for v in self.dims]
assert len(self.depths) == len(self.dims), "depths and dims must have the same length. "
self.stem = nn.Sequential(
CoreCNNBlock(self.input_dim, self.dims[0], norm=self.norm, activation=self.activation, padding=self.padding),
)
self.encoder_blocks = []
for i in range(len(self.depths)):
encoder_block = CoreEncoderBlock(
self.depths[i],
self.dims[i - 1] if i > 0 else self.dims[0],
self.dims[i],
norm=self.norm,
activation=self.activation,
padding=self.padding,
)
self.encoder_blocks.append(encoder_block)
self.encoder_blocks = nn.ModuleList(self.encoder_blocks)
self.decoder_blocks = []
for i in reversed(range(len(self.encoder_blocks))):
decoder_block = CoreDecoderBlock(
self.depths[i],
self.dims[i],
self.dims[i - 1] if i > 0 else self.dims[0],
norm=self.norm,
activation=self.activation,
padding=self.padding,
)
self.decoder_blocks.append(decoder_block)
self.decoder_blocks = nn.ModuleList(self.decoder_blocks)
self.bridge = nn.Sequential(
CoreCNNBlock(self.dims[-1], self.dims[-1], norm=self.norm, activation=self.activation, padding=self.padding),
)
self.head = nn.Sequential(
CoreCNNBlock(self.dims[0], self.dims[0], norm=self.norm, activation=self.activation, padding=self.padding),
nn.Conv2d(self.dims[0], self.output_dim, kernel_size=1, padding=0),
)
def forward(self, x):
skip_connections = []
x = self.stem(x)
for block in self.encoder_blocks:
x, skip = block(x)
skip_connections.append(skip)
x = self.bridge(x)
return x
class CoreEncoder(nn.Module):
def __init__(self, *,
input_dim=10,
output_dim=1,
depths=None,
dims=None,
activation="relu",
norm="batch",
padding="same",
):
super(CoreEncoder, self).__init__()
self.depths = [3, 3, 9, 3] if depths is None else depths
self.dims = [96, 192, 384, 768] if dims is None else dims
self.output_dim = output_dim
self.input_dim = input_dim
self.activation = activation
self.norm = norm
self.padding = padding
assert len(self.depths) == len(self.dims), "depths and dims must have the same length."
self.stem = CoreCNNBlock(self.input_dim, self.dims[0], norm=self.norm, activation=self.activation, padding=self.padding)
self.encoder_blocks = []
for i in range(len(self.depths)):
encoder_block = CoreEncoderBlock(
self.depths[i],
self.dims[i - 1] if i > 0 else self.dims[0],
self.dims[i],
norm=self.norm,
activation=self.activation,
padding=self.padding,
)
self.encoder_blocks.append(encoder_block)
self.encoder_blocks = nn.ModuleList(self.encoder_blocks)
self.head = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Linear(self.dims[-1], self.output_dim),
)
def forward(self, x):
x = self.stem(x)
for block in self.encoder_blocks:
x, _ = block(x)
x = self.head(x)
return x
class ResNet152(nn.Module):
def __init__(self, pretrained):
super(ResNet152, self).__init__()
class MyResNet18(nn.Module):
def __init__(self, resnet, resnet2):
super().__init__()
self.features = nn.Sequential(
resnet.conv1,
resnet.bn1,
resnet.relu,
resnet.maxpool,
resnet.layer1,
resnet.layer2,
resnet.layer3,
resnet.layer4
)
self.avgpool = resnet.avgpool
self.fc = resnet.fc
self.features2 = nn.Sequential(
resnet2.conv1,
resnet2.bn1,
resnet2.relu,
resnet2.maxpool,
resnet2.layer1,
resnet2.layer2,
resnet2.layer3,
resnet2.layer4
)
self.avgpool2 = resnet2.avgpool
self.fc2 = resnet2.fc
def _forward_impl(self, x: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
x2 = self.features2(x2)
x2 = self.avgpool2(x2)
x2 = torch.flatten(x2, 1)
x2 = self.fc2(x2)
return x, x2
def forward(self, x: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
return self._forward_impl(x, x2)
model = torchvision.models.resnet152(pretrained=True)
model2 = torchvision.models.resnet152(pretrained=True)
self.model = MyResNet18(model, model2)
self.l0 = nn.Linear(4480, len(lb.classes_))
def forward(self, x, x2, x3):
batch, _, _, _ = x.shape
x = self.model.features(x)
x2 = self.model.features2(x2)
BATCH_SIZE = 32
CHANNELS = 12
HEIGHT = 64
WIDTH = 64
model = CoreUnet(
input_dim=CHANNELS,
output_dim=1,
).to(device)
model.train()
x3 = model(x3)
x = F.adaptive_avg_pool2d(x, 1).reshape(batch, -1)
x2 = F.adaptive_avg_pool2d(x2, 1).reshape(batch, -1)
x3 = F.adaptive_avg_pool2d(x3, 1).reshape(batch, -1)
x = torch.cat((x, x2, x3), 1)
l0 = self.l0(x)
return l0
model = ResNet152(pretrained=True).to(device)
#model.train()
# we also use: http://github.com/ESA-PhiLab/AI4EO-Challenge-Building-Sustainability
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-5, weight_decay=0.5e-3)
# to test: torch.save(model.state_dict(), './modelB.pt')
model.load_state_dict(torch.load('./modelB.pt'))
model.eval()
def test(model):
print('Now testing')
running_loss = 0.0
running_correct = 0
with torch.no_grad():
for idx, batch in enumerate(tqdm(test_loader2)):
pixel_values, pixel_values2, pixel_values3 = batch[0].to(device, dtype=torch.float32), batch[1].to(device, dtype=torch.float32), batch[2].to(device, dtype=torch.float32)
pixel_values = pixel_values.permute(0, 3, 1, 2)
pixel_values2 = pixel_values2.permute(0, 3, 1, 2)
pixel_values3 = pixel_values3.permute(0, 3, 1, 2)
outputs = model(pixel_values, pixel_values2, pixel_values3)
_, preds = torch.max(outputs, 1)
# We also use: http://github.com/ESA-PhiLab/AI4EO-Challenge-Building-Sustainability
return
def validate(model):
print('Now validating')
y_pred, y_true = [], []
running_loss, running_correct = 0.0, 0
with torch.no_grad():
for idx, batch in enumerate(tqdm(valid_dataloader)):
pixel_values, pixel_values2, pixel_values3, labels = batch[0].to(device, dtype=torch.float32), batch[1].to(device, dtype=torch.float32), batch[2].to(device, dtype=torch.float32), batch[3].to(device)
pixel_values = pixel_values.permute(0, 3, 1, 2)
pixel_values2 = pixel_values2.permute(0, 3, 1, 2)
pixel_values3 = pixel_values3.permute(0, 3, 1, 2)
outputs = model(pixel_values, pixel_values2, pixel_values3)
_, preds = torch.max(outputs, 1)
running_correct += (preds == labels).sum().item()
y_true.append(labels.cpu())
y_pred.append(preds.cpu())
accuracy = 100. * running_correct / len(valid_dataloader.dataset)
print(f'Val Acc: {accuracy:.2f}')
y_true = np.concatenate(y_true)
y_pred = np.concatenate(y_pred)
print(f'Pr: {100.*precision_score(y_true, y_pred, average="weighted"):.2f}, Re: {100.*recall_score(y_true, y_pred, average="weighted"):.2f}, F1: {100.*f1_score(y_true, y_pred, average="weighted"):.2f}')
classes = ('1920', '1940', '1950', '1970', '1980', '2000', '2010')
cf_matrix = confusion_matrix(y_true, y_pred)
df_cm = pd.DataFrame(cf_matrix / np.sum(cf_matrix, axis=1)[:, None], index = [i for i in classes], columns = [i for i in classes])
plt.figure(figsize = (12,7))
sn.heatmap(df_cm, annot=True)
plt.savefig('ConfusionMatrix1.png')
sumdiagonals = 0.
for i in range(len(cf_matrix)):
sumdiagonals += (cf_matrix / np.sum(cf_matrix, axis=1)[:, None])[i,i]
sumdiagonals /= len(cf_matrix)
print(f'Mean of diagonal items of Confusion Matrix: {100.*sumdiagonals:.2f}')
return accuracy
validate(model)
#test(model)