-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmoa_model.py
498 lines (397 loc) · 20.8 KB
/
moa_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import os
import asyncio
from typing import List, Dict
from openai import AsyncOpenAI
from anthropic import AsyncAnthropic
import google.generativeai as genai
from google.generativeai.types import GenerationConfig
from dotenv import load_dotenv
from termcolor import colored
from pathlib import Path
import html
import re
from difflib import SequenceMatcher
import logging
load_dotenv()
logging.basicConfig(level=logging.INFO)
class Agent:
def __init__(self, name: str, model: str, role: str):
self.name = name
self.model = model
self.role = role
async def generate(self, prompt: str) -> str:
raise NotImplementedError
class GPT4Agent(Agent):
def __init__(self):
super().__init__("GPT-4", "gpt-4o", "Agent 1")
self.client = AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
async def generate(self, prompt: str, max_tokens: int = 1000) -> str:
response = await self.client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": prompt}],
max_tokens=max_tokens
)
return response.choices[0].message.content if response.choices else ""
class ClaudeAgent(Agent):
def __init__(self):
super().__init__("Claude", "claude-3-sonnet-20240229", "Agent 2")
self.client = AsyncAnthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
async def generate(self, prompt: str, max_tokens: int = 1000) -> str:
response = await self.client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=max_tokens,
messages=[
{"role": "user", "content": prompt}
]
)
return response.content[0].text if response.content else ""
class GeminiAgent(Agent):
def __init__(self):
super().__init__("Gemini", "gemini-1.5-pro", "Agent 3")
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
self.model = genai.GenerativeModel('gemini-1.5-pro')
async def generate(self, prompt: str, max_tokens: int = 1000) -> str:
generation_config = GenerationConfig(
max_output_tokens=max_tokens,
temperature=0.7,
top_p=1,
top_k=1
)
try:
response = await asyncio.to_thread(
self.model.generate_content,
prompt,
generation_config=generation_config
)
return response.text if response.text else ""
except Exception as e:
print(f"Error in GeminiAgent: {str(e)}")
return f"Error occurred: {str(e)}"
class MixtureOfAgents:
def __init__(self, agents: List[Agent], num_layers: int = 2):
self.agents = agents
self.num_layers = num_layers
self.synthesis_agent = GeminiAgent() # Gemini for layer synthesis
self.final_agent = ClaudeAgent() # Claude for final output
async def generate(self, prompt: str) -> tuple:
all_layer_prompts = []
all_responses = []
all_syntheses = []
current_context = ""
for i in range(self.num_layers):
print(colored(f"\n* Layer {i+1} started", "cyan"))
layer_prompt = self.create_layer_prompt(prompt, current_context, i)
all_layer_prompts.append(layer_prompt)
initial_responses = await self.get_initial_responses(layer_prompt)
print(colored(f"* Layer {i+1} initial responses received", "green"))
aggregations = await self.get_aggregations(prompt, layer_prompt, initial_responses)
print(colored(f"* Layer {i+1} aggregations completed", "green"))
all_responses.append(initial_responses + aggregations)
synthesis, devils_advocate = await self.synthesize_responses(prompt, layer_prompt, aggregations)
all_syntheses.append((synthesis, devils_advocate))
current_context = f"Synthesis: {synthesis}\n\nDevil's Advocate: {devils_advocate}"
print(colored(f"* Layer {i+1} synthesis and devil's advocate perspective generated", "green"))
print(colored(f"* Layer {i+1} completed", "cyan"))
print(colored("\n* Generating Final Output", "yellow"))
final_response = await self.generate_final_output(prompt, all_syntheses)
print(colored("* Final Output Generated", "yellow"))
utilization = self.calculate_utilization(all_responses, final_response)
return all_layer_prompts, all_responses, all_syntheses, final_response, utilization
def create_layer_prompt(self, original_prompt: str, context: str, layer: int) -> str:
if layer == 0:
return original_prompt
else:
return f"""Original prompt: {original_prompt}
Context from previous layer:
{context}
Your task:
1. Independently solve or answer the original prompt using your own logic and reasoning.
2. Consider the provided context, but do not be overly influenced by it.
3. If the context causes you to rethink your instinctive response, explain why and provide your rationale.
4. Provide a clear, well-reasoned answer to the original prompt."""
async def get_initial_responses(self, prompt: str) -> List[str]:
responses = []
for index, agent in enumerate(self.agents, 1):
response = await agent.generate(prompt)
responses.append(response)
print(colored(f"* Agent {index} initial response received", "green"))
return responses
async def get_aggregations(self, original_prompt: str, current_prompt: str, responses: List[str]) -> List[str]:
aggregations = []
for i, agent in enumerate(self.agents):
aggregation_prompt = f"""Original prompt: {original_prompt}
Current context: {current_prompt}
Responses from agents:
{chr(10).join(responses)}
Your tasks:
1. Critically analyze and test the logic and reasoning of all responses, including your own.
2. Identify and challenge ALL assumptions made in the responses, even seemingly obvious ones.
3. If applicable, perform mathematical verifications to check the validity of the answers.
4. Explore multiple interpretations of the prompt using a logic tree, considering all possible scenarios.
5. Conduct a peer review by critically examining and potentially correcting the reasoning of other agents.
6. Provide your own independent answer to the original prompt, using the responses as context but relying primarily on your own reasoning.
7. Explain your thought process, including why you agree or disagree with other responses.
8. If you're unsure about any aspect, state so and explain why.
Ensure your response is structured, addressing each of these points separately."""
aggregation = await agent.generate(aggregation_prompt)
aggregations.append(aggregation)
print(colored(f"* Agent {i+1} aggregation completed", "green"))
return aggregations
async def synthesize_responses(self, original_prompt: str, current_prompt: str, responses: List[str]) -> tuple:
print(colored("* Starting synthesis and devil's advocate generation", "magenta"))
synthesis_prompt = f"""Original prompt: {original_prompt}
Current context: {current_prompt}
Aggregated responses:
{chr(10).join(responses)}
Your tasks:
1. Assess which of the aggregated responses is the most well-reasoned and logically sound.
2. Provide a summary of the key points and any disagreements among the responses.
3. Create a synthesis that will serve as context for the next layer, encouraging further independent analysis.
4. Include the original prompt in your synthesis.
5. Highlight areas that may need further consideration or clarification.
After completing the above tasks, take on an aggressive devil's advocate role:
6. Challenge the prevailing or most popular answer among the responses.
7. Critically examine and question basic counting, logic, and assumptions made by all agents.
8. Identify potential flaws, overlooked aspects, or alternative interpretations that could invalidate the current reasoning.
9. Propose at least one alternative perspective or solution that hasn't been considered.
10. If applicable, point out any mathematical or logical inconsistencies in the reasoning.
Provide your response in two clearly labeled sections: 'Synthesis' and 'Devil's Advocate'."""
combined_response = await self.synthesis_agent.generate(synthesis_prompt)
# Split the combined response into synthesis and devil's advocate parts
parts = combined_response.split("Devil's Advocate:", 1)
synthesis = parts[0].replace("Synthesis:", "").strip()
if len(parts) > 1:
devils_advocate = parts[1].strip()
else:
devils_advocate = "No specific Devil's Advocate perspective was provided. Consider potential alternative viewpoints or challenges to the synthesis."
print(colored("* Synthesis and devil's advocate generation completed", "magenta"))
return synthesis, devils_advocate
async def generate_final_output(self, original_prompt: str, all_syntheses: List[tuple]) -> str:
consolidated_syntheses = "\n\n".join([
f"Layer {i+1} Synthesis:\n{synthesis}\n\nLayer {i+1} Devil's Advocate:\n{devils_advocate}"
for i, (synthesis, devils_advocate) in enumerate(all_syntheses)
])
final_prompt = f"""Original prompt: {original_prompt}
Consolidated syntheses from all layers:
{consolidated_syntheses}
Your tasks:
1. Carefully consider the original prompt and all synthesis responses from each layer.
2. Perform a thorough cross-check of all previous reasoning against the original prompt.
3. Identify any discrepancies or logical inconsistencies between the syntheses and the original prompt.
4. Resolve any conflicts or ambiguities, explaining your reasoning clearly.
5. Provide a final, definitive answer to the original prompt using your own logic and reasoning.
6. Use the syntheses as context, but do not be overly influenced by them if they contain errors.
7. If you disagree with the conclusions in the syntheses, explain why and provide your own rationale.
8. If you're unsure, state so and provide multiple possible answers with explanations.
9. Aim for a comprehensive, well-reasoned response that addresses all aspects of the original prompt.
10. Ensure your final answer is consistent with the original prompt and mathematically/logically sound.
Structure your response clearly, addressing each of these points separately."""
final_response = await self.final_agent.generate(final_prompt)
return final_response
def calculate_utilization(self, all_responses: List[List[str]], final_response: str) -> Dict[str, float]:
utilization = {agent.name: 0 for agent in self.agents}
total_similarity = 0
for agent_index, agent in enumerate(self.agents):
agent_responses = []
for layer_responses in all_responses:
if agent_index < len(layer_responses):
response_parts = layer_responses[agent_index].split(": ", 1)
if len(response_parts) > 1:
original_response = response_parts[1]
else:
original_response = response_parts[0] # In case there's no prefix
agent_responses.append(original_response)
else:
agent_responses.append("") # Add empty string if response is missing
combined_response = " ".join(agent_responses)
similarity = SequenceMatcher(None, combined_response, final_response).ratio()
utilization[agent.name] = similarity
total_similarity += similarity
if total_similarity == 0:
# If total similarity is zero, assign equal utilization to all agents
equal_share = 1.0 / len(self.agents)
return {agent.name: equal_share * 100 for agent in self.agents}
else:
# Convert similarities to percentages
return {agent_name: (similarity / total_similarity) * 100 for agent_name, similarity in utilization.items()}
def generate_markdown_report(prompt: str, all_layer_prompts: List[str], all_responses: List[List[str]], all_syntheses: List[tuple], final_response: str, utilization: Dict[str, float], agents: List[Agent], synthesis_agent: Agent, final_agent: Agent) -> str:
markdown_content = f"""# MoA Response Report
## Original Prompt
> {prompt}
## Agent Utilization
{chr(10).join([f"- {agent_name}: {percentage:.2f}%" for agent_name, percentage in utilization.items()])}
## Final MoA Response
**Final Response Agent: {final_agent.name}**
{final_response}
---
## Intermediate Outputs
"""
for layer, (layer_prompt, responses, (synthesis, devils_advocate)) in enumerate(zip(all_layer_prompts, all_responses, all_syntheses), 1):
markdown_content += f"""
### Layer {layer}
<details>
<summary>Layer {layer} Details (Click to expand)</summary>
#### Layer Prompt
> {"As per original prompt" if layer == 1 else "Provided original user prompt + synthesis from previous layer"}
#### Step 1 - Agents Initial Responses
"""
initial_responses = responses[:len(agents)] if layer == 1 else responses
for i, (agent, response) in enumerate(zip(agents, initial_responses)):
markdown_content += f"""
##### {agent.name} (Agent {i+1})
{response}
"""
if layer == 1:
markdown_content += """
#### Step 2 - Agent Aggregation of All Responses
"""
aggregations = responses[len(agents):]
for i, (agent, response) in enumerate(zip(agents, aggregations)):
markdown_content += f"""
##### {agent.name} (Agent {i+1})
{response}
"""
markdown_content += f"""
#### Step 3 - Synthesized Aggregated Responses (Synthesis Agent: {synthesis_agent.name})
##### Synthesis
{synthesis}
##### Devil's Advocate
{devils_advocate}
</details>
---
"""
markdown_content += f"""
## Information Passed to Final Response Agent
The following synthesized information from all layers, along with the original user prompt, was passed to the final response agent ({final_agent.name}). The final agent will use this information to generate the final MoA response.
"""
for layer, (synthesis, devils_advocate) in enumerate(all_syntheses, 1):
markdown_content += f"""
### Layer {layer} Synthesis
{synthesis}
### Layer {layer} Devil's Advocate
{devils_advocate}
---
"""
return markdown_content.strip()
def generate_final_response_markdown(prompt: str, final_response: str, utilization: Dict[str, float]) -> str:
markdown_content = f"""# MoA Final Response
## Original Prompt:
{prompt}
## Agent Utilization:
"""
for agent, percentage in utilization.items():
markdown_content += f"- {agent}: {percentage:.2f}%\n"
markdown_content += f"""
## Final MoA Response:
{final_response}
"""
return markdown_content
def sanitize_filename(filename):
# Remove invalid filename characters and replace spaces with underscores
sanitized = re.sub(r'[^\w\-_\. ]', '', filename)
sanitized = re.sub(r'\s+', '_', sanitized)
# Ensure the filename is not empty and doesn't start with a dot
if not sanitized or sanitized.startswith('.'):
sanitized = 'untitled_' + sanitized
return sanitized[:50] # Limit filename length
async def interactive_session(moa: MixtureOfAgents):
welcome_message = """
Welcome to the Mixture of Agents (MoA) interactive session!
Mixture of Agents is an innovative approach to leveraging multiple Large Language Models (LLMs) to enhance reasoning and language generation capabilities. This implementation is based on the paper "Mixture-of-Agents Enhances Large Language Model Capabilities" by Wang et al. (2024). You can find the paper at: https://arxiv.org/pdf/2406.04692
In this session, we use the following models:
1. GPT-4o
2. Claude 3.5
3. Gemini Pro 1.5
How Mixture of Agents works:
1. Each layer involves all three agents responding to the prompt or previous layer's output.
2. After initial responses, each agent reviews and aggregates all responses, including their own.
3. A single agent then synthesizes the aggregated responses for each layer.
4. This process repeats for the specified number of layers.
5. Finally, a last agent generates the final output based on all layer syntheses.
Additional roles:
- Synthesis Agent: Gemini Pro 1.5 is responsible for synthesizing the aggregated responses at the end of each layer.
- Final Response Agent: Claude 3.5 is responsible for generating the final, comprehensive output.
"""
print(welcome_message)
print("The default is suggested as 2 layers. It is not recommended to use more than 3 layers.")
layers_input = input("How many layers would you like to use? (Enter a number, or press Enter for default): ").strip()
if not layers_input:
moa.num_layers = 2
else:
try:
num_layers = int(layers_input)
if num_layers < 1:
print("Invalid input. Using the default of 2 layers.")
moa.num_layers = 2
elif num_layers > 3:
print("More than 3 layers is not recommended. Using 3 layers.")
moa.num_layers = 3
else:
moa.num_layers = num_layers
except ValueError:
print("Invalid input. Using the default of 2 layers.")
moa.num_layers = 2
print(f"\nUsing {moa.num_layers} layers for this session.")
print("Type your questions or prompts, and the MoA model will respond.")
print("To exit, type 'quit', 'exit', or 'q'.")
# Create a 'reports' folder if it doesn't exist
reports_folder = Path("reports")
reports_folder.mkdir(exist_ok=True)
while True:
user_input = input("\nEnter your prompt: ")
if user_input.lower() in ['quit', 'exit', 'q']:
print("Thank you for using the MoA model. Goodbye!")
break
print("\nProcessing your request. This may take some time depending on the number of layers.")
print("Please be patient while the MoA completes the process.")
all_layer_prompts, all_responses, all_aggregates, final_response, utilization = await moa.generate(user_input)
print("\nFinal MoA Response:")
print(colored(final_response, 'cyan'))
print("\nAgent Utilization:")
for agent, percentage in utilization.items():
print(f"{agent}: {percentage:.2f}%")
# Saving process
save_output = input("\nDo you want to save the outputs? (Y/N): ").strip().lower()
if save_output in ['y', 'yes']:
base_filename = sanitize_filename(user_input[:50])
md_filename = reports_folder / f"{base_filename}_final_response.md"
md_content = generate_final_response_markdown(user_input, final_response, utilization)
try:
with open(md_filename, "w", encoding="utf-8") as f:
f.write(md_content)
print(f"Final response saved as '{md_filename}'")
except Exception as e:
print(f"Error saving Markdown file: {str(e)}")
save_full_log = input("Do you want to save full logs of the agent responses at each layer? (Y/N): ").strip().lower()
if save_full_log in ['y', 'yes']:
md_log_filename = reports_folder / f"{base_filename}_detailed_log.md"
md_content = generate_markdown_report(
user_input,
all_layer_prompts,
all_responses,
all_aggregates,
final_response,
utilization,
moa.agents,
moa.synthesis_agent,
moa.final_agent
)
try:
with open(md_log_filename, "w", encoding="utf-8") as f:
f.write(md_content)
print(f"Detailed Markdown log saved as '{md_log_filename}'")
except Exception as e:
print(f"Error saving detailed Markdown log: {str(e)}")
else:
print("No files saved.")
async def main():
# Initialize agents
gpt4_agent = GPT4Agent()
claude_agent = ClaudeAgent()
gemini_agent = GeminiAgent()
# Create MixtureOfAgents with 3 layers
moa = MixtureOfAgents([gpt4_agent, claude_agent, gemini_agent], num_layers=3)
# Start interactive session
await interactive_session(moa)
if __name__ == "__main__":
asyncio.run(main())