-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy patheval.py
172 lines (144 loc) · 6.99 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import os
import numpy as np
from tqdm import tqdm
import time
import torch
from torchvision.transforms import ToPILImage
from PIL import Image
from dataloaders import make_data_loader
from dataloaders.utils import decode_seg_map_sequence, Colorize
from utils.metrics import Evaluator
from models.rfnet import RFNet
from models.resnet.resnet_single_scale_single_attention import *
import torch.backends.cudnn as cudnn
class Validator(object):
def __init__(self, args):
self.args = args
self.time_train = []
# Define Dataloader
kwargs = {'num_workers':args.workers, 'pin_memory': False}
_, self.val_loader, _, self.num_class = make_data_loader(args, **kwargs)
print('un_classes:'+str(self.num_class))
# Define evaluator
self.evaluator = Evaluator(self.num_class)
# Define network
self.resnet = resnet18(pretrained=True, efficient=False, use_bn= True)
self.model = RFNet(self.resnet, num_classes=self.num_class, use_bn=True)
if args.cuda:
self.model = torch.nn.DataParallel(self.model, device_ids=self.args.gpu_ids)
self.model = self.model.cuda()
cudnn.benchmark = True # accelarate speed
print('Model loaded successfully!')
# Load weights
assert os.path.exists(args.weight_path), 'weight-path:{} doesn\'t exit!'.format(args.weight_path)
self.new_state_dict = torch.load(os.path.join(args.weight_path, 'model_best.pth'))
self.model = load_my_state_dict(self.model.module, self.new_state_dict['state_dict'])
def validate(self):
self.model.eval()
self.evaluator.reset()
tbar = tqdm(self.val_loader, desc='\r')
for i, (sample, image_name) in enumerate(tbar):
if self.args.depth:
image, depth, target = sample['image'], sample['depth'], sample['label']
else:
image, target = sample['image'], sample['label']
if self.args.cuda:
image = image.cuda()
if self.args.depth:
depth = depth.cuda()
start_time = time.time()
with torch.no_grad():
if self.args.depth:
output = self.model(image, depth)
else:
output = self.model(image)
if self.args.cuda:
torch.cuda.synchronize()
if i!=0:
fwt = time.time() - start_time
self.time_train.append(fwt)
print("Forward time per img (bath size=%d): %.3f (Mean: %.3f)" % (
self.args.val_batch_size, fwt / self.args.val_batch_size,
sum(self.time_train) / len(self.time_train) / self.args.val_batch_size))
time.sleep(0.1) # to avoid overheating the GPU too much
# pred colorize
pre_colors = Colorize()(torch.max(output, 1)[1].detach().cpu().byte())
# save
for i in range(pre_colors.shape[0]):
label_name = os.path.join(self.args.label_save_path + self.args.weight_path.split('run/')[1], image_name[i].split('val\\')[1])
merge_label_name = os.path.join(self.args.merge_label_save_path + self.args.weight_path.split('run/')[1], image_name[i].split('val\\')[1])
os.makedirs(os.path.dirname(label_name), exist_ok=True)
os.makedirs(os.path.dirname(merge_label_name), exist_ok=True)
pre_color_image = ToPILImage()(pre_colors[i]) # pre_colors.dtype = float64
pre_color_image.save(label_name)
if (self.args.merge):
image_merge(image_name[i], pre_color_image,merge_label_name)
print('save image: {}'.format(merge_label_name))
def image_merge(image_root, label,save_name):
image = Image.open(image_root)
width, height = image.size
left = 140
top = 30
right = 2030
bottom = 900
# crop
image = image.crop((left, top, right, bottom))
# resize
image = image.resize(label.size, Image.BILINEAR)
image = image.convert('RGBA')
label = label.convert('RGBA')
image = Image.blend(image, label, 0.6)
image.save(save_name)
def load_my_state_dict(model, state_dict): # custom function to load model when not all dict elements
own_state = model.state_dict()
for name, param in state_dict.items():
if name not in own_state:
print('{} not in model_state'.format(name))
continue
else:
own_state[name].copy_(param)
return model
def main():
parser = argparse.ArgumentParser(description="PyTorch RFNet validation")
parser.add_argument('--dataset', type=str, default='cityscapes',
choices=['citylostfound', 'cityscapes'],
help='dataset name (default: cityscapes)')
parser.add_argument('--workers', type=int, default=4,
metavar='N', help='dataloader threads')
parser.add_argument('--base-size', type=int, default=1024,
help='base image size')
parser.add_argument('--batch-size', type=int, default=6,
help='batch size for training')
parser.add_argument('--val-batch-size', type=int, default=1,
metavar='N', help='input batch size for \
validating (default: auto)')
parser.add_argument('--test-batch-size', type=int, default=1,
metavar='N', help='input batch size for \
testing (default: auto)')
parser.add_argument('--no-cuda', action='store_true', default=
False, help='disables CUDA training')
parser.add_argument('--gpu-ids', type=str, default='0',
help='use which gpu to train, must be a \
comma-separated list of integers only (default=0)')
parser.add_argument('--checkname', type=str, default=None,
help='set the checkpoint name')
parser.add_argument('--weight-path', type=str, default=None,
help='enter your path of the weight')
parser.add_argument('--label-save-path', type=str, default='E:/RFNet/test/label/',
help='path to save label')
parser.add_argument('--merge-label-save-path', type=str, default='E:/RFNet/test/merge/',
help='path to save merged label')
parser.add_argument('--merge', action='store_true', default=False, help='merge image and label')
parser.add_argument('--depth', action='store_true', default=False, help='add depth image or not')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
try:
args.gpu_ids = [int(s) for s in args.gpu_ids.split(',')]
except ValueError:
raise ValueError('Argument --gpu_ids must be a comma-separated list of integers only')
validator = Validator(args)
validator.validate()
if __name__ == "__main__":
main()