-
Notifications
You must be signed in to change notification settings - Fork 0
/
local.py
440 lines (350 loc) · 14.4 KB
/
local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
# from external
import numpy as np
import healpy as hp
import sys
import configparser
import pickle
from matplotlib.pyplot import *
# from act library
from pixell import enmap
sys.path.append("/global/homes/t/toshiyan/Work/Lib/actlib/soapack/")
from soapack import interfaces
# from cmblensplus/wrap/
# from cmblensplus/utils/
import misctools
import plottools as pl
import binning as bn
import analysis as ana
# fixed values
Tcmb = 2.726e6
ac2rad = np.pi/10800.
boss_d = ['boss_d01','boss_d02','boss_d03','boss_d04']
s_16_d = ['s16_d01','s16_d02','s16_d03']
boss_n = ['boss_01','boss_02','boss_03','boss_04']
boss_dn = boss_d + boss_n
day_all = boss_d + s_16_d
qid_all = day_all + boss_n
# qid for combined case
wqids = ['boss_s15d','boss_s15dn','boss_s15n','boss_s16d','boss_alld','boss_alldn']
#-----------------
# qid info
#-----------------
def get_subqids(wqid):
if wqid == 'boss_s15d': qids = boss_d
if wqid == 'boss_s15n': qids = boss_n
if wqid == 'boss_s15dn': qids = boss_dn
if wqid == 'boss_s16d': qids = s_16_d
if wqid == 'boss_alld': qids = day_all
if wqid == 'boss_alldn': qids = qid_all
return qids
def qid_info(qid):
if qid in ['bndn_01','bndn_02','boss_d01','boss_d02','boss_d03','boss_d04','s16_d01','s16_d02','s16_d03']:
model = 'dr5'
if qid in ['boss_01','boss_02','boss_03','boss_04','s16_01','s16_02','s16_03']:
model = 'act_mr3'
if model == 'act_mr3':
if qid == 'boss_01':
season, array, patch, freq = ('s15', 'pa1', 'boss','f150')
if qid == 'boss_02':
season, array, patch, freq = ('s15', 'pa2', 'boss','f150')
if qid == 'boss_03':
season, array, patch, freq = ('s15', 'pa3', 'boss','f090')
if qid == 'boss_04':
season, array, patch, freq = ('s15', 'pa3', 'boss','f150')
if model == 'dr5':
dm = interfaces.models['dr5']()
season, array, patch, freq = (dm.ainfo(qid,'season'), dm.ainfo(qid,'array'), dm.ainfo(qid,'region'), dm.ainfo(qid,'freq'))
return model, season, array, patch, freq
def qid_label(qid):
table = {'boss_01':'S15 PA1 f150 night', \
'boss_02':'S15 PA2 f150 night', \
'boss_03':'S15 PA3 f090 night', \
'boss_04':'S15 PA3 f150 night', \
'boss_d01':'S15 PA1 f150 day', \
'boss_d02':'S15 PA2 f150 day', \
'boss_d03':'S15 PA3 f090 day', \
'boss_d04':'S15 PA3 f150 day', \
's16_d01':'S16 PA2 f150 day', \
's16_d02':'S16 PA3 f090 day', \
's16_d03':'S16 PA3 f150 day', \
}
return table[qid]
def qid_wnoise(qid):
# white noise level at season 16 region (deepest region)
table = {'boss_01':70., \
'boss_02':35., \
'boss_03':30., \
'boss_04':45., \
'boss_d01':70., \
'boss_d02':40., \
'boss_d03':30., \
'boss_d04':45., \
's16_d01':30., \
's16_d02':30., \
's16_d03':40., \
}
return table[qid]*ac2rad/Tcmb
#------------------
# file directories
#------------------
# Define directory
def data_directory(root='/global/homes/t/toshiyan/Work/Ongoing/act_lens/'):
direct = {}
direct['root'] = root
direct['input'] = '/project/projectdirs/act/data/actsims_data/signal_v0.4/'
direct['dr4'] = root + 'data_dr4/'
direct['mask'] = root + 'data_masks/'
direct['plot'] = root + 'data_plots/'
direct['sync'] = root + 'data_synced/'
direct['local'] = root + 'data_local/'
direct['cmb'] = direct['local'] + 'cmb/'
return direct
#-----------------
# analysis object
#-----------------
# Define analysis parameters
class analysis_setup():
def __init__(self,snmin=0,snmax=100,qid='boss_d01',fltr='none',lmin=1,lmax=4096,clmin=100,olmin=1,olmax=2048,bn=30,nside=2048,wind='base',ivar='base',ptsr='base',ascale=1.):
#//// load config file ////#
conf = misctools.load_config('CMB')
# rlz
self.snmin = conf.getint('snmin',snmin)
self.snmax = conf.getint('snmax',snmax)
self.rlz = np.linspace(self.snmin,self.snmax,self.snmax-self.snmin+1,dtype=np.int)
if self.snmin == 0:
self.snum = self.snmax - self.snmin
else:
self.snum = self.snmax - self.snmin + 1
# multipole range of observed CMB alms
self.lmin = conf.getint('lmin',lmin)
self.lmax = conf.getint('lmax',lmax)
# filtering multipole below clmin in addition to lx, ly before map->alm
self.clmin = conf.getint('clmin',clmin)
# multipoles of output CMB spectrum
self.olmin = conf.getint('olmin',olmin)
self.olmax = conf.getint('olmax',olmax)
self.bn = conf.getint('bn',bn)
self.binspc = conf.get('binspc','')
# cmb map
self.qid = conf.get('qid',qid)
self.fltr = conf.get('fltr',fltr)
# fullsky map
self.nside = conf.getint('nside',nside) #Nside for fullsky cmb map
self.npix = 12*self.nside**2
# window, ivar, ptsr
self.wind = conf.get('wind',wind)
if self.fltr == 'cinv':
self.ascale = 0.
else:
self.ascale = conf.getfloat('ascale',ascale)
self.apotag = 'a'+str(self.ascale)+'deg'
self.ivar = conf.get('ivar',ivar)
self.ptsr = conf.get('ptsr',ptsr)
if self.fltr == 'cinv':
self.wtype = '_'.join( [ self.wind, self.ivar, self.ptsr ] )
else:
self.wtype = '_'.join( [ self.wind, self.ivar, self.ptsr, self.apotag ] )
# do
self.doreal = conf.getboolean('doreal',False)
self.dodust = conf.getboolean('dodust',False)
def filename(self):
#//// root directories ////#
d = data_directory()
d_map = d['cmb'] + 'map/'
d_alm = d['cmb'] + 'alm/'
d_aps = d['cmb'] + 'aps/'
d_msk = d['cmb'] + 'mask/'
#//// index ////#
self.ids = [str(i).zfill(5) for i in range(-1,1000)]
self.ids[0] = 'real' # change 1st index
ids = self.ids
#//// Partial sky CMB maps from actsims ////#
self.fmap = { s: [d_map+s+'_'+self.qid+'_'+x+'.fits' for x in ids] for s in ['s','n'] }
# ivar maps
self.fivar = d_map+'ivar_'+self.qid+'.fits'
self.fivar15 = d_map+'ivar_com15.fits'
self.fivar16 = d_map+'ivar_com16.fits'
self.fivarvd = d_map+'ivar_comdy.fits'
# input klm realizations
self.fiklm = [ d['input'] + 'fullskyPhi_alm_'+x+'.fits' for x in ids[1:] ]
#//// base best-fit cls ////#
# aps of Planck 2015 best fit cosmology
self.fucl = d['local'] + 'input/cosmo2017_10K_acc3_scalCls.dat'
self.flcl = d['local'] + 'input/cosmo2017_10K_acc3_lensedCls.dat'
#//// basic tags for alm ////#
self.stag = '_'.join( [ self.qid , self.wtype , self.fltr , 'lc'+str(self.clmin) ] )
self.ntag = '_'.join( [ self.qid , self.wtype , self.fltr , 'lc'+str(self.clmin) ] )
#//// Derived data filenames ////#
# cmb signal/noise alms
self.falm, self.fscl, self.fcls = {}, {}, {}
for s in ['s','n','p','c']:
if s in ['n','p']: tag = self.ntag
if s in ['s','c']: tag = self.stag
self.falm[s] = { m: [d_alm+'/'+s+'_'+m+'_'+tag+'_'+x+'.pkl' for x in ids] for m in ['T','E','B'] }
# cmb aps
self.fscl[s] = d_aps+'aps_sim_1d_'+tag+'_'+s+'.dat'
self.fcls[s] = [d_aps+'/rlz/cl_'+tag+'_'+s+'_'+x+'.dat' for x in ids]
# null cmb aps
self.fscl_nul = d_aps+'aps_sim_1d_'+self.ntag+'_null.dat'
self.fcls_nul = [d_aps+'/rlz/cl_'+self.ntag+'_null_'+x+'.dat' for x in ids]
self.fscl_x = d_aps+'aps_sim_1d_'+self.stag+'_cross.dat'
self.fcls_x = [d_aps+'/rlz/cl_'+self.stag+'_cross_'+x+'.dat' for x in ids]
# suppression
self.fsup = d_aps + 'supfac_'+self.stag+'.dat'
# beam
self.fbeam = d['local'] + 'beam/' + self.qid+'.dat'
# custom mask
if self.wind == 'base': # no restriction to area
self.amask = d_msk + self.qid+'_base_'+self.apotag+'.fits'
else:
self.amask = d_msk + self.wind+'_'+self.apotag+'.fits'
# ptsr mask
#self.fptsr_old = d_msk + 'custom_ptsr_square_mask.fits'
#self.fptsr = d_msk + 'ptsr_cat_crossmatched.fits'
self.fptsr = d_msk + 'ptsr_'+self.ptsr+'.fits'
#//// basic tags ////#
# output multipole range
self.otag = '_oL'+str(self.olmin)+'-'+str(self.olmax)+'_b'+str(self.bn)
def array(self):
#multipole
self.l = np.linspace(0,self.lmax,self.lmax+1)
self.kL = self.l*(self.l+1)*.5
#theoretical cl
self.ucl = np.zeros((5,self.lmax+1)) # TT, EE, TE, pp, Tp
self.ucl[:,2:] = np.loadtxt(self.fucl,unpack=True,usecols=(1,2,3,4,5))[:,:self.lmax-1]
self.ucl[:3,:] *= 2.*np.pi / (self.l**2+self.l+1e-30) / Tcmb**2
self.ucl[3,:] *= 1. / (self.l+1e-30)**4 / Tcmb**2
self.lcl = np.zeros((4,self.lmax+1)) # TT, EE, BB, TE
self.lcl[:,2:] = np.loadtxt(self.flcl,unpack=True,usecols=(1,2,3,4))[:,:self.lmax-1]
self.lcl *= 2.*np.pi / (self.l**2+self.l+1e-30) / Tcmb**2
self.cpp = self.ucl[3,:]
self.ckk = self.ucl[3,:] * (self.l**2+self.l)**2/4.
#----------------
# initial setup
#----------------
def init_analysis_params(**kwargs):
# setup parameters, filenames, and arrays
aobj = analysis_setup(**kwargs)
analysis_setup.filename(aobj)
analysis_setup.array(aobj)
return aobj
# ----------
# Test
# ----------
def quick_rec(alm,ocl,lcl,al,mask=None,rlmin=500,rlmax=3000,nside=2048,lmax=2048):
import curvedsky
if mask is None:
wTlm = alm[:rlmax+1,:rlmax+1]
else:
wTlm = curvedsky.utils.mulwin(alm[:rlmax+1,:rlmax+1],mask)
fTlm = wTlm/(ocl[:rlmax+1,None]+1e-30)
klm, __ = curvedsky.rec_lens.qtt(lmax,rlmin,rlmax,lcl[:rlmax+1],fTlm,fTlm,gtype='k',nside_t=nside)
klm *= al[:lmax+1,None]
kl = curvedsky.utils.alm2cl(lmax,klm)
return klm, kl
# ----------
# Plot
# ----------
def show_tmap(Tlm,ocl,mask=1,lmin=500,lmax=3000,v=3e11,nside=512,lonra=[148,243],latra=[-3,20],title=''):
import curvedsky
Flm = Tlm.copy()
Flm[:lmin,:] = 0.
Tmap = curvedsky.utils.hp_alm2map(nside,lmax,lmax,Flm[:lmax+1,:lmax+1]/(ocl[:lmax+1,None]+1e-30))
hp.cartview(mask*Tmap,lonra=lonra,latra=latra,min=-v,max=v,cbar=False,title=title)
def show_kmap(klm=None,fname=None,lmin=200,lmax=1024,nside=1024,v=.1,lonra=[147,244],latra=[-3,21],output=False,title=''):
import curvedsky
if fname is not None:
Flm, __ = pickle.load(open(fname,"rb"))
if klm is not None:
Flm = klm.copy()
Flm[:lmin,:] = 0.
kmap = curvedsky.utils.hp_alm2map(nside,lmax,lmax,Flm[:lmax+1,:lmax+1])
print('max,min:',np.max(kmap),np.min(kmap))
hp.cartview(kmap,lonra=lonra,latra=latra,min=-v,max=v,cbar=False,title=title)
if output:
return kmap
def load_spec(qobj,mb,rlz=None,cn=1,outN0=False):
# load data
l, al = (np.loadtxt(qobj.f['TT'].al,usecols=(0,cn))).T
l, n0 = (np.loadtxt(qobj.f['TT'].n0bs,usecols=(0,cn))).T
if rlz is None:
#rd = n0.copy()
rd = (np.loadtxt(qobj.f['TT'].rdn0[0])).T[cn]
fcl = qobj.f['TT'].cl[:101]
else:
rd = np.array( [ (np.loadtxt(qobj.f['TT'].rdn0[i])).T[cn] for i in rlz ] )
fcl = [ qobj.f['TT'].cl[i] for i in rlz ]
# binning
vl = al/np.sqrt(l+.5+1e-30)
nb = bn.binning(n0,mb,vl=vl)
rb = bn.binning(rd,mb,vl=vl)
mkk, __, skk, okk = bn.binned_spec(mb,fcl,cn=cn,doreal=True,opt=True,vl=vl)
# obs and sim kk
if rlz is None:
Okk = okk-rb-mkk/100.
Skk = skk-nb-mkk/99.
else:
Okk = okk-rb[0]-mkk/100.
Skk = skk-rb[1:,:]-mkk/99.
# mean and var of sim kk
Mkk = np.mean(Skk,axis=0)
Vkk = np.std(Skk,axis=0)
# output
if outN0:
return Mkk, Vkk, Skk, Okk, nb
else:
return Mkk, Vkk, Skk, Okk
def plot_spec_kk(qobj,rlz=None,cn=1,lmin=40,lmax=2048,bnum=10,output=True,verbose=True,lfac=0.0,plot_real=False,ymin=-.2,ymax=1.5,norm=1.):
# compute binned spectrum
mb = bn.multipole_binning(bnum,lmin=lmin,lmax=lmax)
Mkk, Vkk, Skk, Okk, nb = load_spec(qobj,mb,rlz=rlz,cn=cn,outN0=True)
if verbose: print(np.sqrt(np.sum(Mkk**2/Vkk**2)))
# statistics
st = ana.amplitude(Mkk,Skk,fcb=None,diag=False,disp=True)
# plot
pl.plot_1dstyle(fsize=[10,4],xmin=mb.lmin,xmax=lmax,ymin=ymin,ymax=ymax,ylab='$10^7L^{'+str(lfac)+'}C_L^{\kappa\kappa}$')
aobj = init_analysis_params()
s = mb.bc**lfac*norm*1e7
if plot_real:
errorbar(mb.bc+5,s*Okk,yerr=s*Vkk,fmt='o')
else:
errorbar(mb.bc+5,s*Mkk,yerr=s*Vkk,fmt='o')
plot(aobj.l,1e7*aobj.l**lfac*aobj.ckk,color='k',ls='--')
axhline(0,color='k')
show()
def plot_bias(qobj,cn=1,normcorr=False,plot_real=False,fac=1.,frac=False,r2=0.23/0.51,r4=0.15/0.52):
l, al = (np.loadtxt(qobj.f['TT'].al,usecols=(0,cn))).T
l, n0 = (np.loadtxt(qobj.f['TT'].n0bs,usecols=(0,cn))).T
#l, ml = (np.loadtxt(qobj.f['TT'].MFcl,usecols=(0,cn))).T
l, cl, xl, kk = (np.loadtxt(qobj.f['TT'].mcls,usecols=(0,cn,3,4))).T
ol = (np.loadtxt(qobj.f['TT'].cl[0])).T[cn]
rd = (np.loadtxt(qobj.f['TT'].rdn0[0])).T[cn]
if normcorr:
xl = xl/r2
cl = cl/r4
n0 = n0/r4
CL = cl-n0
OL = (ol-rd)/r4
else:
CL = cl-n0
OL = ol-rd
if frac:
pl.plot_1dstyle(fsize=[15,4],xmin=2,xmax=2048,ymin=.1,ymax=2.,ylab=r'Ratio of $C_L^{\kappa\kappa}$')
plot(l,CL/kk,label='cl',color='r')
plot(l,xl/kk,label='xl',color='g')
axhline(1,color='k',ls='--')
legend()
else:
pl.plot_1dstyle(fsize=[15,4],xmin=2,xmax=2048,ymin=1e-9,ymax=1e-5,ylog=True,ylab='$C_L^{\kappa\kappa}$')
if cn==1 and plot_real:
plot(l,OL,label='ol',color='c')
else:
plot(l,al,label='norm',color='m')
plot(l,n0,label='N0',color='y')
plot(l,cl/99.,label='MF-MC',color='b',ls='--')
plot(l,CL,label='cl',color='r')
if cn==2: plot(l,OL,label='ol',color='c')
plot(l,xl,label='xl',color='g')
plot(l,kk,label='input',color='k')
legend()
return CL