-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_gail.py
153 lines (126 loc) · 6.24 KB
/
run_gail.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/python3
import argparse
import gym
import os
import numpy as np
import tensorflow as tf
from network_models.policy_net import Policy_net
from network_models.discriminator import Discriminator
from algo.ppo import PPOTrain
def argparser():
parser = argparse.ArgumentParser()
parser.add_argument('--gamma', default=0.95)
parser.add_argument('--iteration', default=int(1e8))
# CartPole-v1, Arcobot-v1, Pendulum-v0, HalfCheetah-v2, Hopper-v2, Walker2d-v2, Humanoid-v2
parser.add_argument('--env', help='gym name', default='CartPole-v0')
# adagrad, rmsprop, adadelta, adam, cocob
parser.add_argument('--optimizer', help='optimizer type name', default='cocob')
parser.add_argument('--logdir', help='log directory', default='log/train/gail')
parser.add_argument('--savedir', help='save directory', default='trained_models/gail')
parser.add_argument('--tradir', help='trajectory directory', default='trajectory/ppo')
return parser.parse_args()
def main(args):
# init directories
if not os.path.isdir(args.logdir):
os.mkdir(args.logdir)
if not os.path.isdir(args.logdir + '/' + args.env):
os.mkdir(args.logdir + '/' + args.env)
if not os.path.isdir(args.logdir + '/' + args.env + '/' + args.optimizer):
os.mkdir(args.logdir + '/' + args.env + '/' + args.optimizer)
args.logdir = args.logdir + '/' + args.env + '/' + args.optimizer
if not os.path.isdir(args.savedir):
os.mkdir(args.savedir)
if not os.path.isdir(args.savedir + '/' + args.env):
os.mkdir(args.savedir + '/' + args.env)
if not os.path.isdir(args.savedir + '/' + args.env + '/' + args.optimizer):
os.mkdir(args.savedir + '/' + args.env + '/' + args.optimizer)
args.savedir = args.savedir + '/' + args.env + '/' + args.optimizer
args.tradir = args.tradir + '/' + args.env + '/' + args.optimizer
# init classes
env = gym.make(args.env)
env.seed(0)
ob_space = env.observation_space
Policy = Policy_net('policy', env, args.env)
Old_Policy = Policy_net('old_policy', env, args.env)
PPO = PPOTrain(Policy, Old_Policy, gamma=args.gamma, _optimizer=args.optimizer)
D = Discriminator(env, args.env, _optimizer=args.optimizer)
expert_observations = np.genfromtxt(args.tradir + '/observations.csv')
expert_actions = np.genfromtxt(args.tradir + '/actions.csv', dtype=np.int32)
saver = tf.train.Saver()
with tf.Session() as sess:
writer = tf.summary.FileWriter(args.logdir, sess.graph)
sess.run(tf.global_variables_initializer())
obs = env.reset()
reward = 0 # do NOT use rewards to update policy
success_num = 0
for iteration in range(args.iteration):
observations = []
actions = []
rewards = []
v_preds = []
run_policy_steps = 0
while True:
run_policy_steps += 1
obs = np.stack([obs]).astype(dtype=np.float32) # prepare to feed placeholder Policy.obs
act, v_pred = Policy.act(obs=obs, stochastic=True)
act = np.asscalar(act)
v_pred = np.asscalar(v_pred)
observations.append(obs)
actions.append(act)
rewards.append(reward)
v_preds.append(v_pred)
next_obs, reward, done, info = env.step(act)
if done:
v_preds_next = v_preds[1:] + [0] # next state of terminate state has 0 state value
obs = env.reset()
reward = -1
break
else:
obs = next_obs
writer.add_summary(tf.Summary(value=[tf.Summary.Value(tag='episode_length', simple_value=run_policy_steps)])
, iteration)
writer.add_summary(tf.Summary(value=[tf.Summary.Value(tag='episode_reward', simple_value=sum(rewards))])
, iteration)
print('iteration:', iteration, ',rewards:', sum(rewards))
if iteration == (args.iteration - 1):
saver.save(sess, args.savedir + '/model.ckpt')
print('Clear!! Model saved.')
break
# convert list to numpy array for feeding tf.placeholder
observations = np.reshape(observations, newshape=[-1] + list(ob_space.shape))
actions = np.array(actions).astype(dtype=np.int32)
# train discriminator
for i in range(2):
D.train(expert_s=expert_observations,
expert_a=expert_actions,
agent_s=observations,
agent_a=actions)
# output of this discriminator is reward
d_rewards = D.get_rewards(agent_s=observations, agent_a=actions)
d_rewards = np.reshape(d_rewards, newshape=[-1]).astype(dtype=np.float32)
gaes = PPO.get_gaes(rewards=d_rewards, v_preds=v_preds, v_preds_next=v_preds_next)
gaes = np.array(gaes).astype(dtype=np.float32)
# gaes = (gaes - gaes.mean()) / gaes.std()
v_preds_next = np.array(v_preds_next).astype(dtype=np.float32)
# train policy
inp = [observations, actions, gaes, d_rewards, v_preds_next]
PPO.assign_policy_parameters()
for epoch in range(6):
sample_indices = np.random.randint(low=0, high=observations.shape[0],
size=32) # indices are in [low, high)
sampled_inp = [np.take(a=a, indices=sample_indices, axis=0) for a in inp] # sample training data
PPO.train(obs=sampled_inp[0],
actions=sampled_inp[1],
gaes=sampled_inp[2],
rewards=sampled_inp[3],
v_preds_next=sampled_inp[4])
summary = PPO.get_summary(obs=inp[0],
actions=inp[1],
gaes=inp[2],
rewards=inp[3],
v_preds_next=inp[4])
writer.add_summary(summary, iteration)
writer.close()
if __name__ == '__main__':
args = argparser()
main(args)