Skip to content

Latest commit

 

History

History
602 lines (374 loc) · 30.6 KB

File metadata and controls

602 lines (374 loc) · 30.6 KB

第5节 Makefile书写规则

❤️💕💕CS自学指南,大学教育无论是深度还是广度都没有办法支撑我们的职业素养,这个板块算是自己在CS学习中额外补充和记录的。个人博客:http://nsddd.top


[TOC]

书写规则

规则包含两个部分,一个是依赖关系,一个是生成目标的方法。

在Makefile中,规则的顺序是很重要的,因为,Makefile中只应该有一个最终目标,其它的目标都是被这个目标所连带出来的,所以一定要让make知道你的最终目标是什么。一般来说,定义在Makefile中的目标可能会有很多,但是第一条规则中的目标将被确立为最终的目标。如果第一条规则中的目标有很多个,那么,第一个目标会成为最终的目标。make所完成的也就是这个目标。

好了,还是让我们来看一看如何书写规则。

规则举例

foo.o: foo.c defs.h       # foo模块
    cc -c -g foo.c

看到这个例子,各位应该不是很陌生了,前面也已说过, foo.o 是我们的目标, foo.cdefs.h 是目标所依赖的源文件,而只有一个命令 cc -c -g foo.c (以Tab键开头)。这个规则告诉我们两件事:

  1. 文件的依赖关系, foo.o 依赖于 foo.cdefs.h 的文件,如果 foo.cdefs.h 的文件日期要比 foo.o 文件日期要新,或是 foo.o 不存在,那么依赖关系发生。
  2. 生成或更新 foo.o 文件,就是那个cc命令。它说明了如何生成 foo.o 这个文件。(当然,foo.c文件include了defs.h文件)

规则的语法

targets : prerequisites
    command
    ...

或是这样:

targets : prerequisites ; command
    command
    ...

targets是文件名,以空格分开,可以使用通配符。一般来说,我们的目标基本上是一个文件,但也有可能是多个文件。

command是命令行,如果其不与“target:prerequisites”在一行,那么,必须以 Tab 键开头,如果和prerequisites在一行,那么可以用分号做为分隔。(见上)

prerequisites也就是目标所依赖的文件(或依赖目标)。如果其中的某个文件要比目标文件要新,那么,目标就被认为是“过时的”,被认为是需要重生成的。这个在前面已经讲过了。

如果命令太长,你可以使用反斜杠( \ )作为换行符。make对一行上有多少个字符没有限制。规则告诉make两件事,文件的依赖关系和如何生成目标文件。

一般来说,make会以UNIX的标准Shell,也就是 /bin/sh 来执行命令。

在规则中使用通配符

如果我们想定义一系列比较类似的文件,我们很自然地就想起使用通配符。make支持三个通配符: *?~ 。这是和Unix的B-Shell是相同的。

波浪号( ~ )字符在文件名中也有比较特殊的用途。如果是 ~/test ,这就表示当前用户的 $HOME 目录下的test目录。而 ~hchen/test 则表示用户hchen的宿主目录下的test 目录。(这些都是Unix下的小知识了,make也支持)而在Windows或是 MS-DOS下,用户没有宿主目录,那么波浪号所指的目录则根据环境变量“HOME”而定。

通配符代替了你一系列的文件,如 *.c 表示所有后缀为c的文件。一个需要我们注意的是,如果我们的文件名中有通配符,如: * ,那么可以用转义字符 \ ,如 \* 来表示真实的 * 字符,而不是任意长度的字符串。

好吧,还是先来看几个例子吧:

clean:
    rm -f *.o

其实在这个clean:后面可以加上你想做的一些事情,如果你想看到在编译完后看看main.c的源代码,你可以在加上cat这个命令,例子如下:

clean:
    cat main.c
    rm -f *.o

其结果你试一下就知道的。 上面这个例子我不不多说了,这是操作系统Shell所支持的通配符。这是在命令中的通配符。

print: *.c
    lpr -p $?
    touch print

上面这个例子说明了通配符也可以在我们的规则中,目标print依赖于所有的 .c 文件。其中的 $? 是一个自动化变量,我会在后面给你讲述。

objects = *.o

上面这个例子,表示了通配符同样可以用在变量中。并不是说 *.o 会展开,不!objects的值就是 *.o 。Makefile中的变量其实就是C/C++中的宏。如果你要让通配符在变量中展开,也就是让objects的值是所有 .o 的文件名的集合,那么,你可以这样:

objects := $(wildcard *.o)

另给一个变量使用通配符的例子:

  1. 列出一确定文件夹中的所有 .c 文件。

    objects := $(wildcard *.c)
    
  2. 列出(1)中所有文件对应的 .o 文件,在(3)中我们可以看到它是由make自动编译出的:

    $(patsubst %.c,%.o,$(wildcard *.c))
    
  3. 由(1)(2)两步,可写出编译并链接所有 .c.o 文件

    objects := $(patsubst %.c,%.o,$(wildcard *.c))
    foo : $(objects)
        cc -o foo $(objects)
    

这种用法由关键字“wildcard”,“patsubst”指出,关于Makefile的关键字,我们将在后面讨论。

文件搜寻

在一些大的工程中,有大量的源文件,我们通常的做法是把这许多的源文件分类,并存放在不同的目录中。所以,当make需要去找寻文件的依赖关系时,你可以在文件前加上路径,但最好的方法是把一个路径告诉make,让make在自动去找。

Makefile文件中的特殊变量 VPATH 就是完成这个功能的,如果没有指明这个变量,make只会在当前的目录中去找寻依赖文件和目标文件。如果定义了这个变量,那么,make就会在当前目录找不到的情况下,到所指定的目录中去找寻文件了。

VPATH = src:../headers

上面的定义指定两个目录,“src”和“../headers”,make会按照这个顺序进行搜索。目录由“冒号”分隔。(当然,当前目录永远是最高优先搜索的地方)

另一个设置文件搜索路径的方法是使用make的“vpath”关键字(注意,它是全小写的),这不是变量,这是一个make的关键字,这和上面提到的那个VPATH变量很类似,但是它更为灵活。它可以指定不同的文件在不同的搜索目录中。这是一个很灵活的功能。它的使用方法有三种:

  • vpath <pattern> <directories>

    为符合模式的文件指定搜索目录。

  • vpath <pattern>

    清除符合模式的文件的搜索目录。

  • vpath

    清除所有已被设置好了的文件搜索目录。

vpath使用方法中的需要包含 % 字符。 % 的意思是匹配零或若干字符,(需引用 % ,使用 \ )例如, %.h 表示所有以 .h 结尾的文件。指定了要搜索的文件集,而则指定了 的文件集的搜索的目录。例如:

vpath %.h ../headers

该语句表示,要求make在“../headers”目录下搜索所有以 .h 结尾的文件。(如果某文件在当前目录没有找到的话)

我们可以连续地使用vpath语句,以指定不同搜索策略。如果连续的vpath语句中出现了相同的 ,或是被重复了的,那么,make会按照vpath语句的先后顺序来执行搜索。如:

vpath %.c foo
vpath %   blish
vpath %.c bar

其表示 .c 结尾的文件,先在“foo”目录,然后是“blish”,最后是“bar”目录。

vpath %.c foo:bar
vpath %   blish

而上面的语句则表示 .c 结尾的文件,先在“foo”目录,然后是“bar”目录,最后才是“blish”目录。

伪目标

最早先的一个例子中,我们提到过一个“clean”的目标,这是一个“伪目标”,

clean:
    rm *.o temp

正像我们前面例子中的“clean”一样,既然我们生成了许多文件编译文件,我们也应该提供一个清除它们的“目标”以备完整地重编译而用。 (以“make clean”来使用该目标)

因为,我们并不生成“clean”这个文件。“伪目标”并不是一个文件,只是一个标签,由于“伪目标”不是文件,所以make无法生成它的依赖关系和决定它是否要执行。我们只有通过显式地指明这个“目标”才能让其生效。当然,“伪目标”的取名不能和文件名重名,不然其就失去了“伪目标”的意义了。

当然,为了避免和文件重名的这种情况,我们可以使用一个特殊的标记“.PHONY”来显式地指明一个目标是“伪目标”,向make说明,不管是否有这个文件,这个目标就是“伪目标”。

.PHONY : clean

只要有这个声明,不管是否有“clean”文件,要运行“clean”这个目标,只有“make clean”这样。于是整个过程可以这样写:

.PHONY : clean
clean :
    rm *.o temp

伪目标一般没有依赖的文件。但是,我们也可以为伪目标指定所依赖的文件。伪目标同样可以作为“默认目标”,只要将其放在第一个。一个示例就是,如果你的Makefile需要一口气生成若干个可执行文件,但你只想简单地敲一个make完事,并且,所有的目标文件都写在一个Makefile中,那么你可以使用“伪目标”这个特性:

all : prog1 prog2 prog3
.PHONY : all

prog1 : prog1.o utils.o
    cc -o prog1 prog1.o utils.o

prog2 : prog2.o
    cc -o prog2 prog2.o

prog3 : prog3.o sort.o utils.o
    cc -o prog3 prog3.o sort.o utils.o

我们知道,Makefile中的第一个目标会被作为其默认目标。我们声明了一个“all”的伪目标,其依赖于其它三个目标。由于默认目标的特性是,总是被执行的,但由于“all”又是一个伪目标,伪目标只是一个标签不会生成文件,所以不会有“all”文件产生。于是,其它三个目标的规则总是会被决议。也就达到了我们一口气生成多个目标的目的。 .PHONY : all 声明了“all”这个目标为“伪目标”。(注:这里的显式“.PHONY : all” 不写的话一般情况也可以正确的执行,这样make可通过隐式规则推导出, “all” 是一个伪目标,执行make不会生成“all”文件,而执行后面的多个目标。建议:显式写出是一个好习惯。)

随便提一句,从上面的例子我们可以看出,目标也可以成为依赖。所以,伪目标同样也可成为依赖。看下面的例子:

.PHONY : cleanall cleanobj cleandiff

cleanall : cleanobj cleandiff
    rm program

cleanobj :
    rm *.o

cleandiff :
    rm *.diff

“make cleanall”将清除所有要被清除的文件。“cleanobj”和“cleandiff”这两个伪目标有点像“子程序”的意思。我们可以输入“make cleanall”和“make cleanobj”和“make cleandiff”命令来达到清除不同种类文件的目的。

多目标

Makefile的规则中的目标可以不止一个,其支持多目标,有可能我们的多个目标同时依赖于一个文件,并且其生成的命令大体类似。于是我们就能把其合并起来。当然,多个目标的生成规则的执行命令不是同一个,这可能会给我们带来麻烦,不过好在我们可以使用一个自动化变量 $@ (关于自动化变量,将在后面讲述),这个变量表示着目前规则中所有的目标的集合,这样说可能很抽象,还是看一个例子吧。

bigoutput littleoutput : text.g
    generate text.g -$(subst output,,$@) > $@

上述规则等价于:

bigoutput : text.g
    generate text.g -big > bigoutput
littleoutput : text.g
    generate text.g -little > littleoutput

其中, -$(subst output,,$@) 中的 $ 表示执行一个Makefile的函数,函数名为subst,后面的为参数。关于函数,将在后面讲述。这里的这个函数是替换字符串的意思, $@ 表示目标的集合,就像一个数组, $@ 依次取出目标,并执于命令。

静态模式

静态模式可以更加容易地定义多目标的规则,可以让我们的规则变得更加的有弹性和灵活。我们还是先来看一下语法:

<targets ...> : <target-pattern> : <prereq-patterns ...>
    <commands>
    ...

targets定义了一系列的目标文件,可以有通配符。是目标的一个集合。

target-pattern是指明了targets的模式,也就是的目标集模式。

prereq-patterns是目标的依赖模式,它对target-pattern形成的模式再进行一次依赖目标的定义。

这样描述这三个东西,可能还是没有说清楚,还是举个例子来说明一下吧。如果我们的定义成 %.o ,意思是我们的;集合中都是以 .o 结尾的,而如果我们的定义成 %.c ,意思是对所形成的目标集进行二次定义,其计算方法是,取模式中的 % (也就是去掉了 .o 这个结尾),并为其加上 .c 这个结尾,形成的新集合。

所以,我们的“目标模式”或是“依赖模式”中都应该有 % 这个字符,如果你的文件名中有 % 那么你可以使用反斜杠 \ 进行转义,来标明真实的 % 字符。

看一个例子:

objects = foo.o bar.o

all: $(objects)

$(objects): %.o: %.c
    $(CC) -c $(CFLAGS) $< -o $@

上面的例子中,指明了我们的目标从$object中获取, %.o 表明要所有以 .o 结尾的目标,也就是 foo.o bar.o ,也就是变量 $object 集合的模式,而依赖模式 %.c 则取模式 %.o% ,也就是 foo bar ,并为其加下 .c 的后缀,于是,我们的依赖目标就是 foo.c bar.c 。而命令中的 $<$@ 则是自动化变量, $< 表示第一个依赖文件, $@ 表示目标集(也就是“foo.o bar.o”)。于是,上面的规则展开后等价于下面的规则:

foo.o : foo.c
    $(CC) -c $(CFLAGS) foo.c -o foo.o
bar.o : bar.c
    $(CC) -c $(CFLAGS) bar.c -o bar.o

试想,如果我们的 %.o 有几百个,那么我们只要用这种很简单的“静态模式规则”就可以写完一堆规则,实在是太有效率了。“静态模式规则”的用法很灵活,如果用得好,那会是一个很强大的功能。再看一个例子:

files = foo.elc bar.o lose.o

$(filter %.o,$(files)): %.o: %.c
    $(CC) -c $(CFLAGS) $< -o $@
$(filter %.elc,$(files)): %.elc: %.el
    emacs -f batch-byte-compile $<

$(filter %.o,$(files))表示调用Makefile的filter函数,过滤“$files”集,只要其中模式为“%.o”的内容。其它的内容,我就不用多说了吧。这个例子展示了Makefile中更大的弹性。

自动生成依赖性

在Makefile中,我们的依赖关系可能会需要包含一系列的头文件,比如,如果我们的main.c中有一句 #include "defs.h" ,那么我们的依赖关系应该是:

main.o : main.c defs.h

但是,如果是一个比较大型的工程,你必需清楚哪些C文件包含了哪些头文件,并且,你在加入或删除头文件时,也需要小心地修改Makefile,这是一个很没有维护性的工作。为了避免这种繁重而又容易出错的事情,我们可以使用C/C++编译的一个功能。大多数的C/C++编译器都支持一个“-M”的选项,即自动找寻源文件中包含的头文件,并生成一个依赖关系。例如,如果我们执行下面的命令:

cc -M main.c

其输出是:

main.o : main.c defs.h

于是由编译器自动生成的依赖关系,这样一来,你就不必再手动书写若干文件的依赖关系,而由编译器自动生成了。需要提醒一句的是,如果你使用GNU的C/C++编译器,你得用 -MM 参数,不然, -M 参数会把一些标准库的头文件也包含进来。

gcc -M main.c的输出是:

main.o: main.c defs.h /usr/include/stdio.h /usr/include/features.h \
    /usr/include/sys/cdefs.h /usr/include/gnu/stubs.h \
    /usr/lib/gcc-lib/i486-suse-linux/2.95.3/include/stddef.h \
    /usr/include/bits/types.h /usr/include/bits/pthreadtypes.h \
    /usr/include/bits/sched.h /usr/include/libio.h \
    /usr/include/_G_config.h /usr/include/wchar.h \
    /usr/include/bits/wchar.h /usr/include/gconv.h \
    /usr/lib/gcc-lib/i486-suse-linux/2.95.3/include/stdarg.h \
    /usr/include/bits/stdio_lim.h

gcc -MM main.c的输出则是:

main.o: main.c defs.h

那么,编译器的这个功能如何与我们的Makefile联系在一起呢。因为这样一来,我们的Makefile也要根据这些源文件重新生成,让 Makefile自已依赖于源文件?这个功能并不现实,不过我们可以有其它手段来迂回地实现这一功能。GNU组织建议把编译器为每一个源文件的自动生成的依赖关系放到一个文件中,为每一个 name.c 的文件都生成一个 name.d 的Makefile文件, .d 文件中就存放对应 .c 文件的依赖关系。

于是,我们可以写出 .c 文件和 .d 文件的依赖关系,并让make自动更新或生成 .d 文件,并把其包含在我们的主Makefile中,这样,我们就可以自动化地生成每个文件的依赖关系了。

这里,我们给出了一个模式规则来产生 .d 文件:

%.d: %.c
    @set -e; rm -f $@; \
    $(CC) -M $(CPPFLAGS) $< > $@.$$$$; \
    sed 's,\($*\)\.o[ :]*,\1.o $@ : ,g' < $@.$$$$ > $@; \
    rm -f $@.$$$$

这个规则的意思是,所有的 .d 文件依赖于 .c 文件, rm -f $@ 的意思是删除所有的目标,也就是 .d 文件,第二行的意思是,为每个依赖文件 $< ,也就是 .c 文件生成依赖文件, $@ 表示模式 %.d 文件,如果有一个C文件是name.c,那么 % 就是 name$$$$ 意为一个随机编号,第二行生成的文件有可能是“name.d.12345”,第三行使用sed命令做了一个替换,关于sed命令的用法请参看相关的使用文档。第四行就是删除临时文件。

总而言之,这个模式要做的事就是在编译器生成的依赖关系中加入 .d 文件的依赖,即把依赖关系:

main.o : main.c defs.h

转成:

main.o main.d : main.c defs.h

于是,我们的 .d 文件也会自动更新了,并会自动生成了,当然,你还可以在这个 .d 文件中加入的不只是依赖关系,包括生成的命令也可一并加入,让每个 .d 文件都包含一个完赖的规则。一旦我们完成这个工作,接下来,我们就要把这些自动生成的规则放进我们的主Makefile中。我们可以使用Makefile的“include”命令,来引入别的Makefile文件(前面讲过),例如:

sources = foo.c bar.c

include $(sources:.c=.d)

上述语句中的 $(sources:.c=.d) 中的 .c=.d 的意思是做一个替换,把变量 $(sources) 所有 .c 的字串都替换成 .d ,关于这个“替换”的内容,在后面我会有更为详细的讲述。当然,你得注意次序,因为include是按次序来载入文件,最先载入的 .d 文件中的目标会成为默认目标。

make 的运行

一般来说,最简单的就是直接在命令行下输入make命令,make命令会找当前目录的makefile来执行,一切都是自动的。但也有时你也许只想让make重编译某些文件,而不是整个工程,而又有的时候你有几套编译规则,你想在不同的时候使用不同的编译规则,等等。本章节就是讲述如何使用make命令的。

make的退出码

make命令执行后有三个退出码:

  • 0:表示成功执行。
  • 1:如果make运行时出现任何错误,其返回1。
  • 2:如果你使用了make的“-q”选项,并且make使得一些目标不需要更新,那么返回2。

Make的相关参数我们会在后续章节中讲述。

指定Makefile

前面我们说过,GNU make找寻默认的Makefile的规则是在当前目录下依次找三个文件——“GNUmakefile”、“makefile”和“Makefile”。其按顺序找这三个文件,一旦找到,就开始读取这个文件并执行。

当前,我们也可以给make命令指定一个特殊名字的Makefile。要达到这个功能,我们要使用make的 -f 或是 --file 参数( --makefile 参数也行)。例如,我们有个makefile的名字是“hchen.mk”,那么,我们可以这样来让make来执行这个文件:

make –f hchen.mk

如果在make的命令行是,你不只一次地使用了 -f 参数,那么,所有指定的makefile将会被连在一起传递给make执行。

指定目标

一般来说,make的最终目标是makefile中的第一个目标,而其它目标一般是由这个目标连带出来的。这是make的默认行为。当然,一般来说,你的makefile中的第一个目标是由许多个目标组成,你可以指示make,让其完成你所指定的目标。要达到这一目的很简单,需在make命令后直接跟目标的名字就可以完成(如前面提到的“make clean”形式)

任何在makefile中的目标都可以被指定成终极目标,但是除了以 - 打头,或是包含了 = 的目标,因为有这些字符的目标,会被解析成命令行参数或是变量。甚至没有被我们明确写出来的目标也可以成为make的终极目标,也就是说,只要make可以找到其隐含规则推导规则,那么这个隐含目标同样可以被指定成终极目标。

有一个make的环境变量叫 MAKECMDGOALS ,这个变量中会存放你所指定的终极目标的列表,如果在命令行上,你没有指定目标,那么,这个变量是空值。这个变量可以让你使用在一些比较特殊的情形下。比如下面的例子:

sources = foo.c bar.c
ifneq ( $(MAKECMDGOALS),clean)
    include $(sources:.c=.d)
endif

基于上面的这个例子,只要我们输入的命令不是“make clean”,那么makefile会自动包含“foo.d”和“bar.d”这两个makefile。

使用指定终极目标的方法可以很方便地让我们编译我们的程序,例如下面这个例子:

.PHONY: all
all: prog1 prog2 prog3 prog4

从这个例子中,我们可以看到,这个makefile中有四个需要编译的程序——“prog1”, “prog2”,“prog3”和 “prog4”,我们可以使用“make all”命令来编译所有的目标(如果把all置成第一个目标,那么只需执行“make”),我们也可以使用 “make prog2”来单独编译目标“prog2”。

即然make可以指定所有makefile中的目标,那么也包括“伪目标”,于是我们可以根据这种性质来让我们的makefile根据指定的不同的目标来完成不同的事。在Unix世界中,软件发布时,特别是GNU这种开源软件的发布时,其makefile都包含了编译、安装、打包等功能。我们可以参照这种规则来书写我们的makefile中的目标。

  • all:这个伪目标是所有目标的目标,其功能一般是编译所有的目标。
  • clean:这个伪目标功能是删除所有被make创建的文件。
  • install:这个伪目标功能是安装已编译好的程序,其实就是把目标执行文件拷贝到指定的目标中去。
  • print:这个伪目标的功能是例出改变过的源文件。
  • tar:这个伪目标功能是把源程序打包备份。也就是一个tar文件。
  • dist:这个伪目标功能是创建一个压缩文件,一般是把tar文件压成Z文件。或是gz文件。
  • TAGS:这个伪目标功能是更新所有的目标,以备完整地重编译使用。
  • check和test:这两个伪目标一般用来测试makefile的流程。

当然一个项目的makefile中也不一定要书写这样的目标,这些东西都是GNU的东西,但是我想,GNU搞出这些东西一定有其可取之处(等你的 UNIX下的程序文件一多时你就会发现这些功能很有用了),这里只不过是说明了,如果你要书写这种功能,最好使用这种名字命名你的目标,这样规范一些,规范的好处就是——不用解释,大家都明白。而且如果你的makefile中有这些功能,一是很实用,二是可以显得你的makefile很专业(不是那种初学者的作品)。

检查规则

有时候,我们不想让我们的makefile中的规则执行起来,我们只想检查一下我们的命令,或是执行的序列。于是我们可以使用make命令的下述参数:

  • -n, --just-print, --dry-run, --recon

    不执行参数,这些参数只是打印命令,不管目标是否更新,把规则和连带规则下的命令打印出来,但不执行,这些参数对于我们调试makefile很有用处。

  • -t, --touch

    这个参数的意思就是把目标文件的时间更新,但不更改目标文件。也就是说,make假装编译目标,但不是真正的编译目标,只是把目标变成已编译过的状态。

  • -q, --question

    这个参数的行为是找目标的意思,也就是说,如果目标存在,那么其什么也不会输出,当然也不会执行编译,如果目标不存在,其会打印出一条出错信息。

  • -W <file>, --what-if=<file>, --assume-new=<file>, --new-file=<file>

    这个参数需要指定一个文件。一般是是源文件(或依赖文件),Make会根据规则推导来运行依赖于这个文件的命令,一般来说,可以和“-n”参数一同使用,来查看这个依赖文件所发生的规则命令。

另外一个很有意思的用法是结合 -p-v 来输出makefile被执行时的信息(这个将在后面讲述)。

make的参数

下面列举了所有GNU make 3.80版的参数定义。其它版本和产商的make大同小异,不过其它产商的make的具体参数还是请参考各自的产品文档。

  • -b, -m

    这两个参数的作用是忽略和其它版本make的兼容性。

  • -B, --always-make

    认为所有的目标都需要更新(重编译)。

  • -C

    , --directory=

    指定读取makefile的目录。如果有多个“-C”参数,make的解释是后面的路径以前面的作为相对路径,并以最后的目录作为被指定目录。如:“make -C ~hchen/test -C prog”等价于“make -C ~hchen/test/prog”。

  • -debug[=]

    输出make的调试信息。它有几种不同的级别可供选择,如果没有参数,那就是输出最简单的调试信息。下面是的取值:a: 也就是all,输出所有的调试信息。(会非常的多)b: 也就是basic,只输出简单的调试信息。即输出不需要重编译的目标。v: 也就是verbose,在b选项的级别之上。输出的信息包括哪个makefile被解析,不需要被重编译的依赖文件(或是依赖目标)等。i: 也就是implicit,输出所以的隐含规则。j: 也就是jobs,输出执行规则中命令的详细信息,如命令的PID、返回码等。m: 也就是makefile,输出make读取makefile,更新makefile,执行makefile的信息。

  • -d

    相当于“–debug=a”。

  • -e, --environment-overrides

    指明环境变量的值覆盖makefile中定义的变量的值。

  • -f=, --file=, --makefile=

    指定需要执行的makefile。

  • -h, --help

    显示帮助信息。

  • -i , --ignore-errors

    在执行时忽略所有的错误。

  • -I

    , --include-dir=

    指定一个被包含makefile的搜索目标。可以使用多个“-I”参数来指定多个目录。

  • -j [], --jobs[=]

    指同时运行命令的个数。如果没有这个参数,make运行命令时能运行多少就运行多少。如果有一个以上的“-j”参数,那么仅最后一个“-j”才是有效的。(注意这个参数在MS-DOS中是无用的)

  • -k, --keep-going

    出错也不停止运行。如果生成一个目标失败了,那么依赖于其上的目标就不会被执行了。

  • -l , --load-average[=], -max-load[=]

    指定make运行命令的负载。

  • -n, --just-print, --dry-run, --recon

    仅输出执行过程中的命令序列,但并不执行。

  • -o , --old-file=, --assume-old=

    不重新生成的指定的,即使这个目标的依赖文件新于它。

  • -p, --print-data-base

    输出makefile中的所有数据,包括所有的规则和变量。这个参数会让一个简单的makefile都会输出一堆信息。如果你只是想输出信息而不想执行makefile,你可以使用“make -qp”命令。如果你想查看执行makefile前的预设变量和规则,你可以使用 “make –p –f /dev/null”。这个参数输出的信息会包含着你的makefile文件的文件名和行号,所以,用这个参数来调试你的 makefile会是很有用的,特别是当你的环境变量很复杂的时候。

  • -q, --question

    不运行命令,也不输出。仅仅是检查所指定的目标是否需要更新。如果是0则说明要更新,如果是2则说明有错误发生。

  • -r, --no-builtin-rules

    禁止make使用任何隐含规则。

  • -R, --no-builtin-variabes

    禁止make使用任何作用于变量上的隐含规则。

  • -s, --silent, --quiet

    在命令运行时不输出命令的输出。

  • -S, --no-keep-going, --stop

    取消“-k”选项的作用。因为有些时候,make的选项是从环境变量“MAKEFLAGS”中继承下来的。所以你可以在命令行中使用这个参数来让环境变量中的“-k”选项失效。

  • -t, --touch

    相当于UNIX的touch命令,只是把目标的修改日期变成最新的,也就是阻止生成目标的命令运行。

  • -v, --version

    输出make程序的版本、版权等关于make的信息。

  • -w, --print-directory

    输出运行makefile之前和之后的信息。这个参数对于跟踪嵌套式调用make时很有用。

  • --no-print-directory

    禁止“-w”选项。

  • -W , --what-if=, --new-file=, --assume-file=

    假定目标;需要更新,如果和“-n”选项使用,那么这个参数会输出该目标更新时的运行动作。如果没有“-n”那么就像运行UNIX的“touch”命令一样,使得;的修改时间为当前时间。

  • --warn-undefined-variables

    只要make发现有未定义的变量,那么就输出警告信息。

PreviousNext

END 链接