-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlambda_function.py
32 lines (21 loc) · 1.02 KB
/
lambda_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import tensorflow.lite as tflite # se supone que se comenta este
# import tflite_runtime.interpreter as tflite # PARA EL DOCKERFILE DESCOMENTAR ESTE!! Y COMENTAR EL DE ARRIBA
from keras_image_helper import create_preprocessor
interpreter = tflite.Interpreter(model_path='mask-model.tflite')
interpreter.allocate_tensors()
preprocessor = create_preprocessor('xception', target_size=(224, 224))
input_index = interpreter.get_input_details()[0]['index']
output_index = interpreter.get_output_details()[0]['index']
classes =['WithMask', 'WithoutMask']
# url = 'https://raw.githubusercontent.com/16danielvm/MLZoomCamp/master/Capstone_Project_2/final_model/45.png'
def predict(url):
X = preprocessor.from_url(url)
interpreter.set_tensor(input_index, X)
interpreter.invoke()
preds = interpreter.get_tensor(output_index)
float_predictions = preds[0].tolist()
return dict(zip(classes, float_predictions))
def lambda_handler(event, context):
url = event['url']
result = predict(url)
return result