-
Notifications
You must be signed in to change notification settings - Fork 132
/
Copy pathmagnet.py
668 lines (608 loc) · 31 KB
/
magnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
from __future__ import print_function
import os
import tensorflow as tf
import numpy as np
import cv2
import time
from glob import glob
from scipy.signal import firwin, butter
from functools import partial
from tqdm import tqdm, trange
from subprocess import call
from modules import L1_loss
from modules import res_encoder, res_decoder, res_manipulator
from modules import residual_block, conv2d
from utils import load_train_data, mkdir, imread, save_images
from preprocessor import preprocess_image, preproc_color
from data_loader import read_and_decode_3frames
# Change here if you use ffmpeg.
DEFAULT_VIDEO_CONVERTER = 'avconv'
class MagNet3Frames(object):
def __init__(self, sess, name, arch_config):
self.sess = sess
self.exp_name = name
self.is_graph_built = False
self.n_channels = arch_config["n_channels"]
self.arch_config = arch_config
self.encoder_dims = arch_config["ynet_3frames"]["enc_dims"]
self.num_enc_resblk = arch_config["ynet_3frames"]["num_enc_resblk"]
self.num_man_resblk = arch_config["ynet_3frames"]["num_man_resblk"]
self.num_man_conv = arch_config["ynet_3frames"]["num_man_conv"]
self.num_man_aft_conv = arch_config["ynet_3frames"]["num_man_aft_conv"]
self.num_dec_resblk = arch_config["ynet_3frames"]["num_dec_resblk"]
self.num_texture_resblk = \
arch_config["ynet_3frames"]["num_texture_resblk"]
self.texture_dims = arch_config["ynet_3frames"]["texture_dims"]
self.texture_downsample = \
arch_config["ynet_3frames"]["texture_downsample"]
self.use_texture_conv = arch_config["ynet_3frames"]["use_texture_conv"]
self.shape_dims = arch_config["ynet_3frames"]["shape_dims"]
self.num_shape_resblk = \
arch_config["ynet_3frames"]["num_shape_resblk"]
self.use_shape_conv = arch_config["ynet_3frames"]["use_shape_conv"]
self.decoder_dims = self.texture_dims + self.shape_dims
self.probe_pt = {}
self.manipulator = partial(res_manipulator,
layer_dims=self.encoder_dims,
num_resblk=self.num_man_resblk,
num_conv=self.num_man_conv,
num_aft_conv=self.num_man_aft_conv,
probe_pt=self.probe_pt)
def _encoder(self, image):
enc = res_encoder(image,
layer_dims=self.encoder_dims,
num_resblk=self.num_enc_resblk)
texture_enc = enc
shape_enc = enc
# first convolution on common encoding
if self.use_texture_conv:
stride = 2 if self.texture_downsample else 1
texture_enc = tf.nn.relu(conv2d(texture_enc, self.texture_dims,
3, stride,
name='enc_texture_conv'))
else:
assert self.texture_dims == self.encoder_dims, \
"Texture dim ({}) must match encoder dim ({}) " \
"if texture_conv is not used.".format(self.texture_dims,
self.encoder_dims)
assert not self.texture_downsample, \
"Must use texture_conv if texture_downsample."
if self.use_shape_conv:
shape_enc = tf.nn.relu(conv2d(shape_enc, self.shape_dims,
3, 1, name='enc_shape_conv'))
else:
assert self.shape_dims == self.encoder_dims, \
"Shape dim ({}) must match encoder dim ({}) " \
"if shape_conv is not used.".format(self.shape_dims,
self.encoder_dims)
for i in range(self.num_texture_resblk):
name = 'texture_enc_{}'.format(i)
if i == 0:
# for backward compatibility
name = 'texture_enc'
texture_enc = residual_block(texture_enc, self.texture_dims, 3, 1,
name)
for i in range(self.num_shape_resblk):
name = 'shape_enc_{}'.format(i)
if i == 0:
# for backward compatibility
name = 'shape_enc'
shape_enc = residual_block(shape_enc, self.shape_dims,
3, 1, name)
return texture_enc, shape_enc
def _decoder(self, texture_enc, shape_enc):
if self.texture_downsample:
texture_enc = tf.image.resize_nearest_neighbor(
texture_enc,
tf.shape(texture_enc)[1:3] \
* 2)
texture_enc = tf.pad(texture_enc, [[0, 0], [1, 1], [1, 1], [0, 0]],
"REFLECT")
texture_enc = tf.nn.relu(conv2d(texture_enc, self.texture_dims,
3, 1, padding='VALID',
name='texture_upsample'))
enc = tf.concat([texture_enc, shape_enc], axis=3)
# Needs double the channel because we concat the two encodings.
return res_decoder(enc,
layer_dims=self.decoder_dims,
out_channels=self.n_channels,
num_resblk=self.num_dec_resblk)
def image_transformer(self,
image_a,
image_b,
amplification_factor,
im_size,
options,
is_training,
reuse=False,
name='ynet_3frames'):
with tf.variable_scope(name, reuse=reuse):
with tf.variable_scope('encoder'):
self.texture_a, self.shape_a = self._encoder(image_a)
with tf.variable_scope('encoder', reuse=True):
self.texture_b, self.shape_b = self._encoder(image_b)
with tf.variable_scope('manipulator'):
self.out_shape_enc = self.manipulator(self.shape_a,
self.shape_b,
amplification_factor)
with tf.variable_scope('decoder'):
return self._decoder(self.texture_b, self.out_shape_enc)
def save(self, checkpoint_dir, step):
model_name = self.exp_name
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
self.saver.save(self.sess,
os.path.join(checkpoint_dir, model_name),
global_step=step)
def load(self, checkpoint_dir, loader=None):
if not loader:
loader = self.saver
print(" [*] Reading checkpoint...")
if os.path.isdir(checkpoint_dir):
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = ckpt.model_checkpoint_path
else:
ckpt_name = None
else:
# load from file
ckpt_name = checkpoint_dir
if ckpt_name:
loader.restore(self.sess, ckpt_name)
print('Loaded from ckpt: ' + ckpt_name)
self.ckpt_name = ckpt_name
return True
else:
return False
def _build_feed_model(self):
self.test_input = tf.placeholder(tf.float32,
[None, None, None,
self.n_channels * 3],
name='test_AB_and_output')
self.test_amplification_factor = tf.placeholder(tf.float32,
[None],
name='amplification_factor')
self.test_image_a = self.test_input[:, :, :, :self.n_channels]
self.test_image_b = self.test_input[:, :, :, self.n_channels:(2 * self.n_channels)]
self.test_amplified_frame = self.test_input[:, :, :, (2*self.n_channels):(3 * self.n_channels)]
self.test_output = self.image_transformer(
self.test_image_a,
self.test_image_b,
self.test_amplification_factor,
[self.image_height, self.image_width],
self.arch_config,
False,
False)
self.test_output = tf.clip_by_value(self.test_output, -1.0, 1.0)
self.saver = tf.train.Saver()
self.is_graph_built = True
def setup_for_inference(self, checkpoint_dir, image_width, image_height):
"""Setup model for inference.
Build computation graph, initialize variables, and load checkpoint.
"""
self.image_width = image_width
self.image_height = image_height
# Figure out image dimension
self._build_feed_model()
ginit_op = tf.global_variables_initializer()
linit_op = tf.local_variables_initializer()
self.sess.run([ginit_op, linit_op])
if self.load(checkpoint_dir):
print("[*] Load Success")
else:
raise RuntimeError('MagNet: Failed to load checkpoint file.')
self.is_graph_built = True
def inference(self, frameA, frameB, amplification_factor):
"""Run Magnification on two frames.
Args:
frameA: path to first frame
frameB: path to second frame
amplification_factor: float for amplification factor
"""
in_frames = [load_train_data([frameA, frameB, frameB],
gray_scale=self.n_channels==1, is_testing=True)]
in_frames = np.array(in_frames).astype(np.float32)
out_amp = self.sess.run(self.test_output,
feed_dict={self.test_input: in_frames,
self.test_amplification_factor:
[amplification_factor]})
return out_amp
def run(self,
checkpoint_dir,
vid_dir,
frame_ext,
out_dir,
amplification_factor,
velocity_mag=False):
"""Magnify a video in the two-frames mode.
Args:
checkpoint_dir: checkpoint directory.
vid_dir: directory containing video frames videos are processed
in sorted order.
out_dir: directory to place output frames and resulting video.
amplification_factor: the amplification factor,
with 0 being no change.
velocity_mag: if True, process video in Dynamic mode.
"""
vid_name = os.path.basename(out_dir)
# make folder
mkdir(out_dir)
vid_frames = sorted(glob(os.path.join(vid_dir, '*.' + frame_ext)))
first_frame = vid_frames[0]
im = imread(first_frame)
image_height, image_width = im.shape
if not self.is_graph_built:
self.setup_for_inference(checkpoint_dir, image_width, image_height)
try:
i = int(self.ckpt_name.split('-')[-1])
print("Iteration number is {:d}".format(i))
vid_name = vid_name + '_' + str(i)
except:
print("Cannot get iteration number")
if velocity_mag:
print("Running in Dynamic mode")
prev_frame = first_frame
desc = vid_name if len(vid_name) < 10 else vid_name[:10]
for frame in tqdm(vid_frames, desc=desc):
file_name = os.path.basename(frame)
out_amp = self.inference(prev_frame, frame, amplification_factor)
im_path = os.path.join(out_dir, file_name)
save_images(out_amp, [1, 1], im_path)
if velocity_mag:
prev_frame = frame
# Try to combine it into a video
call([DEFAULT_VIDEO_CONVERTER, '-y', '-f', 'image2', '-r', '30', '-i',
os.path.join(out_dir, '%06d.png'), '-c:v', 'libx264',
os.path.join(out_dir, vid_name + '.mp4')]
)
# Temporal Operations
def _build_IIR_filtering_graphs(self):
"""
Assume a_0 = 1
"""
self.input_image = tf.placeholder(tf.float32,
[1, self.image_height,
self.image_width,
self.n_channels],
name='input_image')
self.filtered_enc = tf.placeholder(tf.float32,
[1, None, None,
self.shape_dims],
name='filtered_enc')
self.out_texture_enc = tf.placeholder(tf.float32,
[1, None, None,
self.texture_dims],
name='out_texture_enc')
self.ref_shape_enc = tf.placeholder(tf.float32,
[1, None, None,
self.shape_dims],
name='ref_shape_enc')
self.amplification_factor = tf.placeholder(tf.float32, [None],
name='amplification_factor')
with tf.variable_scope('ynet_3frames'):
with tf.variable_scope('encoder'):
self.texture_enc, self.shape_rep = \
self._encoder(self.input_image)
with tf.variable_scope('manipulator'):
# set encoder a to zero because we do temporal filtering
# instead of taking the difference.
self.out_shape_enc = self.manipulator(0.0,
self.filtered_enc,
self.amplification_factor)
self.out_shape_enc += self.ref_shape_enc - self.filtered_enc
with tf.variable_scope('decoder'):
self.output_image = tf.clip_by_value(
self._decoder(self.out_texture_enc,
self.out_shape_enc),
-1.0, 1.0)
self.saver = tf.train.Saver()
def run_temporal(self,
checkpoint_dir,
vid_dir,
frame_ext,
out_dir,
amplification_factor,
fl, fh, fs,
n_filter_tap,
filter_type):
"""Magnify video with a temporal filter.
Args:
checkpoint_dir: checkpoint directory.
vid_dir: directory containing video frames videos are processed
in sorted order.
out_dir: directory to place output frames and resulting video.
amplification_factor: the amplification factor,
with 0 being no change.
fl: low cutoff frequency.
fh: high cutoff frequency.
fs: sampling rate of the video.
n_filter_tap: number of filter tap to use.
filter_type: Type of filter to use. Can be one of "fir",
"butter", or "differenceOfIIR". For "differenceOfIIR",
fl and fh specifies rl and rh coefficients as in Wadhwa et al.
"""
nyq = fs / 2.0
if filter_type == 'fir':
filter_b = firwin(n_filter_tap, [fl, fh], nyq=nyq, pass_zero=False)
filter_a = []
elif filter_type == 'butter':
filter_b, filter_a = butter(n_filter_tap, [fl/nyq, fh/nyq],
btype='bandpass')
filter_a = filter_a[1:]
elif filter_type == 'differenceOfIIR':
# This is a copy of what Neal did. Number of taps are ignored.
# Treat fl and fh as rl and rh as in Wadhwa's code.
# Write down the difference of difference equation in Fourier
# domain to proof this:
filter_b = [fh - fl, fl - fh]
filter_a = [-1.0*(2.0 - fh - fl), (1.0 - fl) * (1.0 - fh)]
else:
raise ValueError('Filter type must be either '
'["fir", "butter", "differenceOfIIR"] got ' + \
filter_type)
head, tail = os.path.split(out_dir)
tail = tail + '_fl{}_fh{}_fs{}_n{}_{}'.format(fl, fh, fs,
n_filter_tap,
filter_type)
out_dir = os.path.join(head, tail)
vid_name = os.path.basename(out_dir)
# make folder
mkdir(out_dir)
vid_frames = sorted(glob(os.path.join(vid_dir, '*.' + frame_ext)))
first_frame = vid_frames[0]
im = imread(first_frame)
image_height, image_width = im.shape
if not self.is_graph_built:
self.image_width = image_width
self.image_height = image_height
# Figure out image dimension
self._build_IIR_filtering_graphs()
ginit_op = tf.global_variables_initializer()
linit_op = tf.local_variables_initializer()
self.sess.run([ginit_op, linit_op])
if self.load(checkpoint_dir):
print("[*] Load Success")
else:
raise RuntimeError('MagNet: Failed to load checkpoint file.')
self.is_graph_built = True
try:
i = int(self.ckpt_name.split('-')[-1])
print("Iteration number is {:d}".format(i))
vid_name = vid_name + '_' + str(i)
except:
print("Cannot get iteration number")
if len(filter_a) is not 0:
x_state = []
y_state = []
for frame in tqdm(vid_frames, desc='Applying IIR'):
file_name = os.path.basename(frame)
frame_no, _ = os.path.splitext(file_name)
frame_no = int(frame_no)
in_frames = [load_train_data([frame, frame, frame],
gray_scale=self.n_channels==1, is_testing=True)]
in_frames = np.array(in_frames).astype(np.float32)
texture_enc, x = self.sess.run([self.texture_enc, self.shape_rep],
feed_dict={
self.input_image:
in_frames[:, :, :, :3],})
x_state.insert(0, x)
# set up initial condition.
while len(x_state) < len(filter_b):
x_state.insert(0, x)
if len(x_state) > len(filter_b):
x_state = x_state[:len(filter_b)]
y = np.zeros_like(x)
for i in range(len(x_state)):
y += x_state[i] * filter_b[i]
for i in range(len(y_state)):
y -= y_state[i] * filter_a[i]
# update y state
y_state.insert(0, y)
if len(y_state) > len(filter_a):
y_state = y_state[:len(filter_a)]
out_amp = self.sess.run(self.output_image,
feed_dict={self.out_texture_enc:
texture_enc,
self.filtered_enc: y,
self.ref_shape_enc: x,
self.amplification_factor:
[amplification_factor]})
im_path = os.path.join(out_dir, file_name)
out_amp = np.squeeze(out_amp)
out_amp = (127.5*(out_amp+1)).astype('uint8')
cv2.imwrite(im_path, cv2.cvtColor(out_amp,
code=cv2.COLOR_RGB2BGR))
else:
# This does FIR in fourier domain. Equivalent to cyclic
# convolution.
x_state = None
for i, frame in tqdm(enumerate(vid_frames),
desc='Getting encoding'):
file_name = os.path.basename(frame)
in_frames = [load_train_data([frame, frame, frame],
gray_scale=self.n_channels==1, is_testing=True)]
in_frames = np.array(in_frames).astype(np.float32)
texture_enc, x = self.sess.run([self.texture_enc, self.shape_rep],
feed_dict={
self.input_image:
in_frames[:, :, :, :3],})
if x_state is None:
x_state = np.zeros(x.shape + (len(vid_frames),),
dtype='float32')
x_state[:, :, :, :, i] = x
filter_fft = np.fft.fft(np.fft.ifftshift(filter_b),
n=x_state.shape[-1])
# Filtering
for i in trange(x_state.shape[1], desc="Applying FIR filter"):
x_fft = np.fft.fft(x_state[:, i, :, :], axis=-1)
x_fft *= filter_fft[np.newaxis, np.newaxis, np.newaxis, :]
x_state[:, i, :, :] = np.fft.ifft(x_fft)
for i, frame in tqdm(enumerate(vid_frames), desc='Decoding'):
file_name = os.path.basename(frame)
frame_no, _ = os.path.splitext(file_name)
frame_no = int(frame_no)
in_frames = [load_train_data([frame, frame, frame],
gray_scale=self.n_channels==1, is_testing=True)]
in_frames = np.array(in_frames).astype(np.float32)
texture_enc, _ = self.sess.run([self.texture_enc, self.shape_rep],
feed_dict={
self.input_image:
in_frames[:, :, :, :3],
})
out_amp = self.sess.run(self.output_image,
feed_dict={self.out_texture_enc: texture_enc,
self.filtered_enc: x_state[:, :, :, :, i],
self.ref_shape_enc: x,
self.amplification_factor: [amplification_factor]})
im_path = os.path.join(out_dir, file_name)
out_amp = np.squeeze(out_amp)
out_amp = (127.5*(out_amp+1)).astype('uint8')
cv2.imwrite(im_path, cv2.cvtColor(out_amp,
code=cv2.COLOR_RGB2BGR))
del x_state
# Try to combine it into a video
call([DEFAULT_VIDEO_CONVERTER, '-y', '-f', 'image2', '-r', '30', '-i',
os.path.join(out_dir, '%06d.png'), '-c:v', 'libx264',
os.path.join(out_dir, vid_name + '.mp4')]
)
# Training code.
def _build_training_graph(self, train_config):
self.global_step = tf.Variable(0, trainable=False)
filename_queue = tf.train.string_input_producer(
[os.path.join(train_config["dataset_dir"],
'train.tfrecords')],
num_epochs=train_config["num_epochs"])
frameA, frameB, frameC, frameAmp, amplification_factor = \
read_and_decode_3frames(filename_queue,
(train_config["image_height"],
train_config["image_width"],
self.n_channels))
min_after_dequeue = 1000
num_threads = 16
capacity = min_after_dequeue + \
(num_threads + 2) * train_config["batch_size"]
frameA, frameB, frameC, frameAmp, amplification_factor = \
tf.train.shuffle_batch([frameA,
frameB,
frameC,
frameAmp,
amplification_factor],
batch_size=train_config["batch_size"],
capacity=capacity,
num_threads=num_threads,
min_after_dequeue=min_after_dequeue)
frameA = preprocess_image(frameA, train_config)
frameB = preprocess_image(frameB, train_config)
frameC = preprocess_image(frameC, train_config)
self.loss_function = partial(self._loss_function,
train_config=train_config)
self.output = self.image_transformer(frameA,
frameB,
amplification_factor,
[train_config["image_height"],
train_config["image_width"]],
self.arch_config, True, False)
self.reg_loss = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
if self.reg_loss and train_config["weight_decay"] > 0.0:
print("Adding Regularization Weights.")
self.loss = self.loss_function(self.output, frameAmp) + \
train_config["weight_decay"] * tf.add_n(self.reg_loss)
else:
print("No Regularization Weights.")
self.loss = self.loss_function(self.output, frameAmp)
# Add regularization more
# TODO: Hardcoding the network name scope here.
with tf.variable_scope('ynet_3frames/encoder', reuse=True):
texture_c, shape_c = self._encoder(frameC)
self.loss = self.loss + \
train_config["texture_loss_weight"] * L1_loss(texture_c, self.texture_a) + \
train_config["shape_loss_weight"] * L1_loss(shape_c, self.shape_b)
self.loss_sum = tf.summary.scalar('train_loss', self.loss)
self.image_sum = tf.summary.image('train_B_OUT',
tf.concat([frameB, self.output],
axis=2),
max_outputs=2)
if self.n_channels == 3:
self.image_comp_sum = tf.summary.image('train_GT_OUT',
frameAmp - self.output,
max_outputs=2)
self.image_orig_comp_sum = tf.summary.image('train_ORIG_OUT',
frameA - self.output,
max_outputs=2)
else:
self.image_comp_sum = tf.summary.image('train_GT_OUT',
tf.concat([frameAmp,
self.output,
frameAmp],
axis=3),
max_outputs=2)
self.image_orig_comp_sum = tf.summary.image('train_ORIG_OUT',
tf.concat([frameA,
self.output,
frameA],
axis=3),
max_outputs=2)
self.saver = tf.train.Saver(max_to_keep=train_config["ckpt_to_keep"])
# Loss function
def _loss_function(self, a, b, train_config):
# Use train_config to implement more advance losses.
with tf.variable_scope("loss_function"):
return L1_loss(a, b) * train_config["l1_loss_weight"]
def train(self, train_config):
# Define training graphs
self._build_training_graph(train_config)
self.lr = tf.train.exponential_decay(train_config["learning_rate"],
self.global_step,
train_config["decay_steps"],
train_config["lr_decay"],
staircase=True)
self.optim_op = tf.train.AdamOptimizer(self.lr,
beta1=train_config["beta1"]) \
.minimize(self.loss,
var_list=tf.trainable_variables(),
global_step=self.global_step)
ginit_op = tf.global_variables_initializer()
linit_op = tf.local_variables_initializer()
self.sess.run([ginit_op, linit_op])
self.writer = tf.summary.FileWriter(train_config["logs_dir"],
self.sess.graph)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=self.sess, coord=coord)
start_time = time.time()
for v in tf.trainable_variables():
print(v)
if train_config["continue_train"] and \
self.load(train_config["checkpoint_dir"]):
print('[*] Load Success')
elif train_config["restore_dir"] and \
self.load(train_config["restore_dir"],
tf.train.Saver(var_list=tf.trainable_variables())):
self.sess.run(self.global_step.assign(0))
print('[*] Restore success')
else:
print('Training from scratch.')
try:
while not coord.should_stop():
_, loss_sum_str = self.sess.run([self.optim_op, self.loss_sum])
global_step = self.sess.run(self.global_step)
self.writer.add_summary(loss_sum_str, global_step)
if global_step % 100 == 0:
# Write image summary.
img_sum_str, img_comp_str, img_orig_str = \
self.sess.run([self.image_sum,
self.image_comp_sum,
self.image_orig_comp_sum])
self.writer.add_summary(img_sum_str, global_step)
self.writer.add_summary(img_comp_str, global_step)
self.writer.add_summary(img_orig_str, global_step)
elapsed_time = time.time() - start_time
print ("Steps: %2d time: %4.4f (%4.4f steps/sec)" % (
global_step, elapsed_time,
float(global_step) / elapsed_time))
if np.mod(global_step, train_config["save_freq"]) == 2:
self.save(train_config["checkpoint_dir"], global_step)
except tf.errors.OutOfRangeError:
print('Done Training.')
finally:
coord.request_stop()
coord.join(threads)