-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcsr_network.py
438 lines (386 loc) · 19 KB
/
csr_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
from utils import *
class RecoveryNet(nn.Module):
def __init__(self, in_dim, cat_dim28, cat_dim56, cp=False, bb='gn'):
super(RecoveryNet, self).__init__()
self.cp, self.cp_seq = init_cp(cp) # use checkpoint
self.in_dim = in_dim
self.leak = 0.
self.bb = bb
self.cat_dim28 = cat_dim28
self.cat_dim56 = cat_dim56
self.build_composer()
self.loss_rec = nn.BCELoss()
def build_composer(self):
# ic3: 8, 17, 35, 71 gn: 7, 14, 28, 56
if self.bb == 'gn' or self.bb == 'dn'or self.bb == 'r18':
self.rec_net1 = nn.Sequential(
Reshape(shape=[self.in_dim // 4, 2, 2]), # 896 ch
nn.Conv2d(in_channels=self.in_dim // 4, out_channels=256, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(256), nn.LeakyReLU(negative_slope=self.leak, inplace=True),
nn.ConvTranspose2d(in_channels=256, out_channels=256, kernel_size=3, stride=2, padding=0,
output_padding=1, bias=True), nn.BatchNorm2d(256),
nn.LeakyReLU(negative_slope=self.leak, inplace=True), # 6 * 6
nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2, padding=0,
output_padding=1, bias=True), nn.BatchNorm2d(128),
nn.LeakyReLU(negative_slope=self.leak, inplace=True),
nn.ConvTranspose2d(in_channels=128, out_channels=128, kernel_size=3, stride=2, padding=1,
output_padding=1, bias=True), nn.BatchNorm2d(128),
nn.LeakyReLU(negative_slope=self.leak, inplace=True), # 28 * 28
)
self.rec_net2 = nn.Sequential(
nn.ConvTranspose2d(in_channels=128 + self.cat_dim28, out_channels=128, kernel_size=3, stride=2, padding=1,
output_padding=1, bias=True), nn.BatchNorm2d(128),
nn.LeakyReLU(negative_slope=self.leak, inplace=True), # 56 * 56
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1, bias=True),
nn.BatchNorm2d(128), nn.LeakyReLU(negative_slope=self.leak, inplace=True),
nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True),
nn.BatchNorm2d(64), FakeFn(self.sig4) # 56 * 56
)
else:
self.rec_net1 = nn.Sequential(
Reshape(shape=[self.in_dim // 16, 4, 4]), # 352 ch
nn.Conv2d(in_channels=self.in_dim // 16, out_channels=256, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm2d(256), nn.LeakyReLU(negative_slope=self.leak, inplace=True),
nn.ConvTranspose2d(in_channels=256, out_channels=256, kernel_size=3, stride=2, padding=0,
output_padding=0, bias=True), nn.BatchNorm2d(256), # 9 * 9
nn.LeakyReLU(negative_slope=self.leak, inplace=True),
nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2, padding=1,
output_padding=0, bias=True), nn.BatchNorm2d(128), # 17 * 17
nn.LeakyReLU(negative_slope=self.leak, inplace=True),
nn.ConvTranspose2d(in_channels=128, out_channels=128, kernel_size=3, stride=2, padding=0,
output_padding=0, bias=True), nn.BatchNorm2d(128),
nn.LeakyReLU(negative_slope=self.leak, inplace=True), # 35 * 35
)
self.rec_net2 = nn.Sequential(
nn.ConvTranspose2d(in_channels=128 + self.cat_dim28, out_channels=128, kernel_size=3, stride=2, padding=0,
output_padding=0, bias=True), nn.BatchNorm2d(128), # 71 * 71
nn.LeakyReLU(negative_slope=self.leak, inplace=True),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=2, bias=True), # 73 * 73
nn.BatchNorm2d(128), nn.LeakyReLU(negative_slope=self.leak, inplace=True),
nn.LeakyReLU(negative_slope=self.leak, inplace=True),
nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True),
nn.BatchNorm2d(64), FakeFn(self.sig4) # 73 * 73
)
self.rec_net3 = nn.Sequential(
nn.Conv2d(in_channels=64 + self.cat_dim56, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True),
nn.BatchNorm2d(64), nn.LeakyReLU(negative_slope=self.leak, inplace=True),
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=True),
nn.BatchNorm2d(64), nn.LeakyReLU(negative_slope=self.leak, inplace=True),
nn.Conv2d(in_channels=64, out_channels=4, kernel_size=3, stride=1, padding=1, bias=True),
nn.BatchNorm2d(4), nn.Sigmoid()
)
def sig4(self, x):
x1 = x[:, :4]
x2 = x[:, 4:]
x1 = torch.sigmoid(x1)
x2 = F.leaky_relu(x2, negative_slope=self.leak)
return torch.cat([x1, x2], dim=1)
def _loss_map(self, x, target):
x = torch.clamp(x, 0.0, 1.0)
loss_rec = self.loss_rec(x,target)
return loss_rec, 0, 0
def loss(self, in_x, add_x28, add_x56, target):
inter_out = self.cp(self.rec_net1, in_x)
out1 = self.rec_net2(torch.cat([inter_out, add_x28], dim=1))
out2 = self.rec_net3(torch.cat([out1, add_x56], dim=1))
rec_loss2, overlap2, constraint2 = self._loss_map(out2, target)
return rec_loss2, overlap2, constraint2
def forward(self, in_x, add_x28, add_x56):
inter_out = self.cp(self.rec_net1, in_x)
out1 = self.rec_net2(torch.cat([inter_out, add_x28], dim=1))
out2 = self.rec_net3(torch.cat([out1, add_x56], dim=1))
return out2
def init_cp(cp):
cp_ = checkpoint if cp else lambda f, x: f(x)
cp_seq_ = checkpoint_sequential if cp else lambda f, s, x: f(x)
return cp_, cp_seq_
from double_anchor_infornce import *
from torch.optim import Adam
class CSRNet(nn.Module):
ITEM_NAMES = {
'loss_da': 1.0,
'loss_rec': 1.0,
'rec_mask0': 1.0,
'rec_mask1': 1.0,
'rec_mask2': 1.0,
'rec_mask3': 1.0,
}
def bb2sizes(bb):
if bb == 'gn':
return {"in": 224, "rec_c": 28, "rec_f": 56}
elif bb == 'ic3':
return {"in": 299, "rec_c": 35, "rec_f": 73}
else:
# resnet18
return {"in": 224, "rec_c": 28, "rec_f": 56}
def __init__(self, logger=None, args=None):
super(CSRNet, self).__init__()
self.logger = logger
self.args = args
if args.add_ch == 0:
args.fusion = 0
self.loss_num = 10
if args.bb == 'gn':
self.print("Init network googlenet")
self.feat_extractor = models.googlenet(args.imagenet)
self.feat_extractor.feat_dim_ori = 1024
cat_dim28, cat_dim56 = 192, 64
elif args.bb == 'ic3':
self.print("Init network inception_v3")
self.feat_extractor = models.inception_v3(args.imagenet)
self.feat_extractor.feat_dim_ori = 2048
cat_dim28, cat_dim56 = 192, 64
elif args.bb == 'r18':
self.print("Init network resnet_18")
self.feat_extractor = models.resnet18(args.imagenet)
self.feat_extractor.feat_dim_ori = 512
cat_dim28, cat_dim56 = 128, 64
else:
self.print("Init network densenet169")
self.feat_extractor = models.densenet169(args.imagenet, memory_efficient=True)
self.feat_extractor.feat_dim_ori = 1664
cat_dim28, cat_dim56 = 512, 256
self.adj_step = 1
self.cp, self.cp_seq = init_cp(self.args.cp)
self.feat_extractor.feat_dim = self.feat_extractor.feat_dim_ori + self.args.add_ch * 3
self.recovery_net = RecoveryNet(self.feat_extractor.feat_dim * 2,
cat_dim28=cat_dim28,
cat_dim56=cat_dim56,
cp=args.cp, bb=args.bb)
self.leak = 0.
self.dummy = DummyLayer()
self._build_feature_extractor()
self.double_anchor_infonce = DoubleAnchorInfoNCE(temperature=self.args.tau, dist_type=2)
self.weights = args.weights if isinstance(args.weights, dict) else eval(args.weights)
params = [self.feat_extractor, self.recovery_net,
self.multi_level_extractor1, self.multi_level_extractor2,
self.multi_level_extractor3, self.dummy]
self.params = params
self.opt = Adam(sum([list(m.parameters()) for m in params], []), lr=args.lr)
for s in CSRNet.ITEM_NAMES:
if s not in self.weights:
self.weights[s] = CSRNet.ITEM_NAMES[s]
self.weights["rec_mask"] = [self.weights["rec_mask{}".format(i)] for i in range(4)]
self.print("\n\nnum_params: {}\topt_params: {} \ninput: {} \nweights: {}\n\n".format(
num_params(self) ,len(list(self.parameters())), self.args.weights, self.weights))
def _build_feature_extractor(self):
if self.args.bb == 'gn':
in_ch1 = 192
in_ch2 = 480
in_ch3 = 832
elif self.args.bb == 'ic3':
in_ch1 = 192
in_ch2 = 768
in_ch3 = 1280
elif self.args.bb == 'r18':
in_ch1 = 64
in_ch2 = 128
in_ch3 = 256
else:
in_ch1 = 128
in_ch2 = 256
in_ch3 = 640
self.multi_level_extractor1 = nn.Sequential(
nn.Conv2d(in_ch1, 192, 3),
nn.BatchNorm2d(192),
nn.LeakyReLU(negative_slope=self.leak, inplace=True),
nn.Conv2d(192, self.args.add_ch, 3),
nn.BatchNorm2d(self.args.add_ch),
nn.LeakyReLU(negative_slope=self.leak, inplace=True),
FakeFn(lambda x: x.mean(-1).mean(-1))
)
self.multi_level_extractor2 = nn.Sequential(
nn.Conv2d(in_ch2, 256, 1),
nn.BatchNorm2d(256),
nn.LeakyReLU(negative_slope=self.leak, inplace=True),
nn.Conv2d(256, self.args.add_ch, 3),
nn.BatchNorm2d(self.args.add_ch),
nn.LeakyReLU(negative_slope=self.leak, inplace=True),
FakeFn(lambda x: x.mean(-1).mean(-1))
)
self.multi_level_extractor3 = nn.Sequential(
nn.Conv2d(in_ch3, self.args.add_ch, 1),
nn.BatchNorm2d(self.args.add_ch),
nn.LeakyReLU(negative_slope=self.leak, inplace=True),
FakeFn(lambda x: x.mean(-1).mean(-1))
)
def _da_loss(self, sk, im, sk2):
return self.double_anchor_infonce(sk=sk, sk2=sk2, im=im, alpha=self.args.alpha)
def get_feats(self, x):
cp = self.cp
feats = []
if self.args.bb == 'gn':
x = cp(self.feat_extractor.conv1,x)
x = cp(self.feat_extractor.maxpool1,x)
x56 = x
x = cp(self.feat_extractor.conv2,x)
x = cp(self.feat_extractor.conv3,x)
x = cp(self.feat_extractor.maxpool2,x)
feats.append(cp(self.multi_level_extractor1,x))
x28 = x
x = cp(self.feat_extractor.inception3a,x)
x = cp(self.feat_extractor.inception3b,x)
x = cp(self.feat_extractor.maxpool3,x)
feats.append(cp(self.multi_level_extractor2,x))
x = cp(self.feat_extractor.inception4a,x)
x = cp(self.feat_extractor.inception4b,x)
x = cp(self.feat_extractor.inception4c,x)
x = cp(self.feat_extractor.inception4d,x)
x = cp(self.feat_extractor.inception4e,x)
x = cp(self.feat_extractor.maxpool4,x)
feats.append(cp(self.multi_level_extractor3,x))
x = cp(self.feat_extractor.inception5a, x)
x = cp(self.feat_extractor.inception5b, x)
x = cp(self.feat_extractor.avgpool, x)
x = torch.flatten(x, 1)
feats.append(x)
elif self.args.bb == 'ic3':
# N x 3 x 299 x 299
x = cp(self.feat_extractor.Conv2d_1a_3x3, x)
x = cp(self.feat_extractor.Conv2d_2a_3x3, x)
x = cp(self.feat_extractor.Conv2d_2b_3x3, x)
x = torch.max_pool2d(x, kernel_size=3, stride=2)
# N x 64 x 73 x 73
x56 = x
x = cp(self.feat_extractor.Conv2d_3b_1x1, x)
x = cp(self.feat_extractor.Conv2d_4a_3x3, x)
# x = cp(self.feat_extractor.maxpool2, x)
x = torch.max_pool2d(x, kernel_size=3, stride=2)
# N x 192 x 35 x 35
feats.append(cp(self.multi_level_extractor1, x))
x28 = x
x = cp(self.feat_extractor.Mixed_5b, x)
x = cp(self.feat_extractor.Mixed_5c, x)
x = cp(self.feat_extractor.Mixed_5d, x)
x = cp(self.feat_extractor.Mixed_6a, x)
# N x 768 x 17 x 17
feats.append(cp(self.multi_level_extractor2, x))
x = cp(self.feat_extractor.Mixed_6b, x)
x = cp(self.feat_extractor.Mixed_6c, x)
x = cp(self.feat_extractor.Mixed_6d, x)
x = cp(self.feat_extractor.Mixed_6e, x)
x = cp(self.feat_extractor.Mixed_7a, x)
# N x 1280 x 8 x 8
feats.append(cp(self.multi_level_extractor3, x))
x = cp(self.feat_extractor.Mixed_7b, x)
x = cp(self.feat_extractor.Mixed_7c, x)
x = F.adaptive_avg_pool2d(x, (1,1))
x = torch.flatten(x, 1)
# N x 2048
feats.append(x)
elif self.args.bb == 'r18':
x = cp(self.feat_extractor.conv1, x)
x = cp(self.feat_extractor.bn1, x)
x = self.feat_extractor.maxpool(self.feat_extractor.relu(x))
x56 = x
x = cp(self.feat_extractor.layer1, x)
feats.append(cp(self.multi_level_extractor1, x))
x = cp(self.feat_extractor.layer2, x)
x28 = x
feats.append(cp(self.multi_level_extractor2, x))
x = cp(self.feat_extractor.layer3, x)
feats.append(cp(self.multi_level_extractor3, x))
x = cp(self.feat_extractor.layer4, x)
x = self.feat_extractor.avgpool(x)
x = torch.flatten(x, 1)
# N x 2048
feats.append(x)
else:
x = self.feat_extractor.features[:5](x)
x56 = x
x = self.feat_extractor.features[5:6](x)
feats.append(cp(self.multi_level_extractor1, x))
x = self.feat_extractor.features[6:7](x)
x28 = x
x = self.feat_extractor.features[7:8](x)
feats.append(cp(self.multi_level_extractor2, x))
x = self.feat_extractor.features[8:10](x)
feats.append(cp(self.multi_level_extractor3, x))
x = self.feat_extractor.features[10:](x)
x = F.adaptive_avg_pool2d(F.relu(x, inplace=True), (1, 1))
x = torch.flatten(x, 1)
feats.append(x)
return torch.cat(feats, -1), x28, x56
def chceck_params(self, depth=3):
D = depth + 1
NUM = num_params(self)
def chceck_params(module, depth):
if depth == 0: return None
num = num_params(module)
if num == 0: return None
print('----' * (D - depth), " t:", type(module), " n:", num, " r:", round(num / NUM, 5))
for child in module.children():
chceck_params(child, depth - 1)
chceck_params(self, depth)
def print(self, s):
if self.logger is None:
print(s)
else:
self.logger.info('{}'.format(s))
def forward(self, x):
return self.get_feats(x)[0]
def adjust_learning_rate(self, reset=False): # .996
self.adj_step += 1
optimizer = self.opt
if self.adj_step % 100 == 0:
for param_group in optimizer.param_groups:
lr = self.args.lr * math.pow(self.args.decay, float(self.adj_step) / self.args.steps)
param_group['lr'] = lr
self.print("learning_rate: lr:{}".format(lr))
def _recovery_loss(self, condition_image, disordered_sketch, sk_rec, compensate_sk28, compensate_sk56):
return self.recovery_net.loss(torch.cat([condition_image, disordered_sketch], dim=-1),
compensate_sk28, compensate_sk56, sk_rec)
def _optimize_params(self, sk, im, disordered, sk_recovery):
rets = [0] * self.loss_num
for i in range(len(self.weights["rec_mask"])):
sk_recovery[:, i] = sk_recovery[:, i] * self.weights["rec_mask"][i]
bs = sk.shape[0]
feats_all, feats_all28, feats_all56 = self.get_feats(self.dummy(torch.cat([sk, im, disordered])))
sk = feats_all[:bs]
im = feats_all[bs:bs*2]
compensate_sk = feats_all[bs*2:bs * 3]
compensate_sk28 = feats_all28[bs * 2:bs * 3]
compensate_sk56 = feats_all56[bs * 2:bs * 3]
loss_da = self._da_loss(sk, im, compensate_sk)
loss_rec = self._recovery_loss(im, compensate_sk, sk_recovery, compensate_sk28, compensate_sk56)
rets_ = [loss_da, *loss_rec]
self.adjust_learning_rate()
self.opt.zero_grad()
(
loss_da * abs(self.weights['loss_da']) +
sum(loss_rec) * abs(self.weights['loss_rec'])
).backward()
self.opt.step()
rets[:len(rets_)] = rets_
for i in range(len(rets)):
rets[i] = float(rets[i].item() if isinstance(rets[i], torch.Tensor) else rets[i])
return rets
def optimize_params(self, sk, im, disordered, sk_recovery):
return self._optimize_params(sk, im, disordered, sk_recovery)
from easydict import EasyDict as edict
def _test():
args = edict()
args.lr = 0.0002
args.opt = 'Adam'
args.tau = 0.005
args.weights = "{'loss_da': 10.0, 'loss_rec': 1.0}"
args.decay = 0.1
args.steps = 100000
args.cp = 1
args.alpha = 0.3
args.bb = 'gn'
args.recovery_net = 1
args.imagenet = True
args.trp_d = 2
args.add_ch = 128
afg = CSRNet(None, args).cuda()
afg.chceck_params(2)
bs = 2
sk_ori = torch.rand(bs,3,CSRNet.bb2sizes(args.bb)['in'],CSRNet.bb2sizes(args.bb)['in']).cuda()
im_ori = torch.rand(bs,3,CSRNet.bb2sizes(args.bb)['in'],CSRNet.bb2sizes(args.bb)['in']).cuda()
sk = torch.rand(bs,3,CSRNet.bb2sizes(args.bb)['in'],CSRNet.bb2sizes(args.bb)['in']).cuda()
label = torch.rand([bs, 4, CSRNet.bb2sizes(args.bb)['rec_f'], CSRNet.bb2sizes(args.bb)['rec_f']]).cuda()
for i in range(100):
print(i, afg.optimize_params(sk_ori, im_ori, sk, label))
if __name__=="__main__":
_test()