-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
172 lines (129 loc) · 4.87 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import json
import random
import os
from keras import preprocessing
import numpy as np
from config import ENCODER_SAVE_PATH, MAX_SEQUENCE_LEN, DATASET_SAVE_PATH, MALWARE_PATH, BENIGN_PATH, FORCE_READ_DATA
ENCODER = {'null': 0}
DECODER = {0: 'null'}
def read_f(path):
benign = []
with open(path) as f:
for line in f:
calls = line.strip().split()
benign.append(calls)
return benign
def create_encoder_decoder(benign_list, malware_list):
global ENCODER
global DECODER
uniq = set()
for sample in benign_list + malware_list:
for call in sample:
uniq.add(call)
for i, elem in enumerate(uniq, 1):
ENCODER[elem] = i
DECODER[i] = elem
def encode_data(calls_list):
enc = []
for calls in calls_list:
calls = calls[:MAX_SEQUENCE_LEN]
l = [ENCODER.get(c, 0) for c in calls]
enc.append(l)
return enc
def decode_data(arr2d):
dec = []
for row in arr2d:
l = []
for c in row:
s = DECODER.get(int(c))
if s == 'null':
break
else:
l.append(s)
dec.append(l)
return dec
def split_data(data, limit=None, test_ratio=0.1, val_ratio=0.1):
if not limit:
limit = len(data)
elif limit < len(data):
data = data[:limit]
test_count = int(limit * test_ratio)
val_count = int(limit * val_ratio)
train_count = int(limit * (1.0 - val_ratio - test_ratio))
random.shuffle(data)
test_end = int(len(data) * test_ratio)
val_end = test_end + int(len(data) * val_ratio)
print("test: {}:{} val: {}:{} train: {}:{}".format(0, test_end, test_end, val_end, val_end, len(data)))
test = data[0:test_end]
val = data[test_end:val_end]
train = data[val_end:]
while len(test) < test_count:
test = test + data[0:test_end]
while len(val) < val_count:
val = val + data[test_end:val_end]
while len(train) < train_count:
train = train + data[val_end:]
return train, test, val
def convert_to_numpy(data, padding_type='post'):
padded = preprocessing.sequence.pad_sequences(data, maxlen=MAX_SEQUENCE_LEN, dtype='int32',
padding=padding_type, truncating=padding_type, value=0.0)
return padded
def label_data(benign, malware):
# merge
X = np.concatenate((benign, malware), axis=0)
# labels
Y = np.concatenate((np.ones(benign.shape[0], dtype=int), np.zeros(malware.shape[0], dtype=int)))
return X, Y
def prepare_data(data, limit=None, test_ratio=0.1, val_ratio=0.1, padding_type='post'):
encoded = encode_data(data)
train, test, val = split_data(encoded, limit, test_ratio, val_ratio)
trainX = convert_to_numpy(train, padding_type)
testX = convert_to_numpy(test, padding_type)
valX = convert_to_numpy(val, padding_type)
return trainX, testX, valX
def generate_dataset():
benign_raw = read_f(BENIGN_PATH)
malware_raw = read_f(MALWARE_PATH)
create_encoder_decoder(benign_raw, malware_raw)
benign = prepare_data(benign_raw)
malware = prepare_data(malware_raw)
X_train, Y_train = label_data(benign[0], malware[0])
X_test, Y_test = label_data(benign[1], malware[1])
X_val, Y_val = label_data(benign[2], malware[2])
return X_train, Y_train, X_test, Y_test, X_val, Y_val
def print_data_examples(X, y):
positive = X[y.astype(bool), :]
negative = X[np.invert(y.astype(bool)), :]
print("POSITIVE EXAMPLES (out of {}):".format(positive.shape[0]))
for c in range(8):
idx = random.randint(0, positive.shape[0]-1)
sample_raw = positive[idx]
calls = decode_data([sample_raw])[0][:10]
print(calls)
print("NEGATIVE EXAMPLES (out of {}):".format(negative.shape[0]))
for c in range(8):
idx = random.randint(0, negative.shape[0] - 1)
sample_raw = negative[idx]
calls = decode_data([sample_raw])[0][:10]
print(calls)
def load_encoder(path):
global ENCODER
global DECODER
with open(path) as f:
encoder = json.load(f)
ENCODER = encoder
DECODER = dict([(v, k) for k, v in encoder.items()])
return ENCODER, DECODER
def get_data():
if os.path.exists(DATASET_SAVE_PATH) and not FORCE_READ_DATA:
load_encoder(ENCODER_SAVE_PATH)
filez = np.load(DATASET_SAVE_PATH)
return filez['x_train'], filez['y_train'], filez['x_test'], filez['y_test'], filez['x_val'], filez['y_val']
else:
X_train, Y_train, X_test, Y_test, X_val, Y_val = generate_dataset()
with open(ENCODER_SAVE_PATH, 'w') as f:
json.dump(ENCODER, f)
with open(DATASET_SAVE_PATH, 'wb') as f:
np.savez_compressed(f, x_train=X_train, y_train=Y_train, x_test=X_test, y_test=Y_test, x_val=X_val,
y_val=Y_val)
return X_train, Y_train, X_test, Y_test, X_val, Y_val