-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathpartial.rs
952 lines (780 loc) · 36.2 KB
/
partial.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
use alloc::{
collections::{BTreeMap, BTreeSet},
vec::Vec,
};
use winter_utils::{Deserializable, Serializable};
use super::{MmrDelta, MmrProof, Rpo256, RpoDigest};
use crate::merkle::{
mmr::{leaf_to_corresponding_tree, nodes_in_forest},
InOrderIndex, InnerNodeInfo, MerklePath, MmrError, MmrPeaks,
};
// TYPE ALIASES
// ================================================================================================
type NodeMap = BTreeMap<InOrderIndex, RpoDigest>;
// PARTIAL MERKLE MOUNTAIN RANGE
// ================================================================================================
/// Partially materialized Merkle Mountain Range (MMR), used to efficiently store and update the
/// authentication paths for a subset of the elements in a full MMR.
///
/// This structure store only the authentication path for a value, the value itself is stored
/// separately.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct PartialMmr {
/// The version of the MMR.
///
/// This value serves the following purposes:
///
/// - The forest is a counter for the total number of elements in the MMR.
/// - Since the MMR is an append-only structure, every change to it causes a change to the
/// `forest`, so this value has a dual purpose as a version tag.
/// - The bits in the forest also corresponds to the count and size of every perfect binary
/// tree that composes the MMR structure, which server to compute indexes and perform
/// validation.
pub(crate) forest: usize,
/// The MMR peaks.
///
/// The peaks are used for two reasons:
///
/// 1. It authenticates the addition of an element to the [PartialMmr], ensuring only valid
/// elements are tracked.
/// 2. During a MMR update peaks can be merged by hashing the left and right hand sides. The
/// peaks are used as the left hand.
///
/// All the peaks of every tree in the MMR forest. The peaks are always ordered by number of
/// leaves, starting from the peak with most children, to the one with least.
pub(crate) peaks: Vec<RpoDigest>,
/// Authentication nodes used to construct merkle paths for a subset of the MMR's leaves.
///
/// This does not include the MMR's peaks nor the tracked nodes, only the elements required to
/// construct their authentication paths. This property is used to detect when elements can be
/// safely removed, because they are no longer required to authenticate any element in the
/// [PartialMmr].
///
/// The elements in the MMR are referenced using a in-order tree index. This indexing scheme
/// permits for easy computation of the relative nodes (left/right children, sibling, parent),
/// which is useful for traversal. The indexing is also stable, meaning that merges to the
/// trees in the MMR can be represented without rewrites of the indexes.
pub(crate) nodes: NodeMap,
/// Flag indicating if the odd element should be tracked.
///
/// This flag is necessary because the sibling of the odd doesn't exist yet, so it can not be
/// added into `nodes` to signal the value is being tracked.
pub(crate) track_latest: bool,
}
impl PartialMmr {
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Returns a new [PartialMmr] instantiated from the specified peaks.
pub fn from_peaks(peaks: MmrPeaks) -> Self {
let forest = peaks.num_leaves();
let peaks = peaks.into();
let nodes = BTreeMap::new();
let track_latest = false;
Self { forest, peaks, nodes, track_latest }
}
/// Returns a new [PartialMmr] instantiated from the specified components.
///
/// This constructor does not check the consistency between peaks and nodes. If the specified
/// peaks are nodes are inconsistent, the returned partial MMR may exhibit undefined behavior.
pub fn from_parts(peaks: MmrPeaks, nodes: NodeMap, track_latest: bool) -> Self {
let forest = peaks.num_leaves();
let peaks = peaks.into();
Self { forest, peaks, nodes, track_latest }
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the current `forest` of this [PartialMmr].
///
/// This value corresponds to the version of the [PartialMmr] and the number of leaves in the
/// underlying MMR.
pub fn forest(&self) -> usize {
self.forest
}
/// Returns the number of leaves in the underlying MMR for this [PartialMmr].
pub fn num_leaves(&self) -> usize {
self.forest
}
/// Returns the peaks of the MMR for this [PartialMmr].
pub fn peaks(&self) -> MmrPeaks {
// expect() is OK here because the constructor ensures that MMR peaks can be constructed
// correctly
MmrPeaks::new(self.forest, self.peaks.clone()).expect("invalid MMR peaks")
}
/// Returns true if this partial MMR tracks an authentication path for the leaf at the
/// specified position.
pub fn is_tracked(&self, pos: usize) -> bool {
if pos >= self.forest {
return false;
} else if pos == self.forest - 1 && self.forest & 1 != 0 {
// if the number of leaves in the MMR is odd and the position is for the last leaf
// whether the leaf is tracked is defined by the `track_latest` flag
return self.track_latest;
}
let leaf_index = InOrderIndex::from_leaf_pos(pos);
self.is_tracked_node(&leaf_index)
}
/// Given a leaf position, returns the Merkle path to its corresponding peak, or None if this
/// partial MMR does not track an authentication paths for the specified leaf.
///
/// Note: The leaf position is the 0-indexed number corresponding to the order the leaves were
/// added, this corresponds to the MMR size _prior_ to adding the element. So the 1st element
/// has position 0, the second position 1, and so on.
///
/// # Errors
/// Returns an error if the specified position is greater-or-equal than the number of leaves
/// in the underlying MMR.
pub fn open(&self, pos: usize) -> Result<Option<MmrProof>, MmrError> {
let tree_bit =
leaf_to_corresponding_tree(pos, self.forest).ok_or(MmrError::PositionNotFound(pos))?;
let depth = tree_bit as usize;
let mut nodes = Vec::with_capacity(depth);
let mut idx = InOrderIndex::from_leaf_pos(pos);
while let Some(node) = self.nodes.get(&idx.sibling()) {
nodes.push(*node);
idx = idx.parent();
}
// If there are nodes then the path must be complete, otherwise it is a bug
debug_assert!(nodes.is_empty() || nodes.len() == depth);
if nodes.len() != depth {
// The requested `pos` is not being tracked.
Ok(None)
} else {
Ok(Some(MmrProof {
forest: self.forest,
position: pos,
merkle_path: MerklePath::new(nodes),
}))
}
}
// ITERATORS
// --------------------------------------------------------------------------------------------
/// Returns an iterator nodes of all authentication paths of this [PartialMmr].
pub fn nodes(&self) -> impl Iterator<Item = (&InOrderIndex, &RpoDigest)> {
self.nodes.iter()
}
/// Returns an iterator over inner nodes of this [PartialMmr] for the specified leaves.
///
/// The order of iteration is not defined. If a leaf is not presented in this partial MMR it
/// is silently ignored.
pub fn inner_nodes<'a, I: Iterator<Item = (usize, RpoDigest)> + 'a>(
&'a self,
mut leaves: I,
) -> impl Iterator<Item = InnerNodeInfo> + 'a {
let stack = if let Some((pos, leaf)) = leaves.next() {
let idx = InOrderIndex::from_leaf_pos(pos);
vec![(idx, leaf)]
} else {
Vec::new()
};
InnerNodeIterator {
nodes: &self.nodes,
leaves,
stack,
seen_nodes: BTreeSet::new(),
}
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
/// Adds a new peak and optionally track it. Returns a vector of the authentication nodes
/// inserted into this [PartialMmr] as a result of this operation.
///
/// When `track` is `true` the new leaf is tracked.
pub fn add(&mut self, leaf: RpoDigest, track: bool) -> Vec<(InOrderIndex, RpoDigest)> {
self.forest += 1;
let merges = self.forest.trailing_zeros() as usize;
let mut new_nodes = Vec::with_capacity(merges);
let peak = if merges == 0 {
self.track_latest = track;
leaf
} else {
let mut track_right = track;
let mut track_left = self.track_latest;
let mut right = leaf;
let mut right_idx = forest_to_rightmost_index(self.forest);
for _ in 0..merges {
let left = self.peaks.pop().expect("Missing peak");
let left_idx = right_idx.sibling();
if track_right {
let old = self.nodes.insert(left_idx, left);
new_nodes.push((left_idx, left));
debug_assert!(
old.is_none(),
"Idx {:?} already contained an element {:?}",
left_idx,
old
);
};
if track_left {
let old = self.nodes.insert(right_idx, right);
new_nodes.push((right_idx, right));
debug_assert!(
old.is_none(),
"Idx {:?} already contained an element {:?}",
right_idx,
old
);
};
// Update state for the next iteration.
// --------------------------------------------------------------------------------
// This layer is merged, go up one layer.
right_idx = right_idx.parent();
// Merge the current layer. The result is either the right element of the next
// merge, or a new peak.
right = Rpo256::merge(&[left, right]);
// This iteration merged the left and right nodes, the new value is always used as
// the next iteration's right node. Therefore the tracking flags of this iteration
// have to be merged into the right side only.
track_right = track_right || track_left;
// On the next iteration, a peak will be merged. If any of its children are tracked,
// then we have to track the left side
track_left = self.is_tracked_node(&right_idx.sibling());
}
right
};
self.peaks.push(peak);
new_nodes
}
/// Adds the authentication path represented by [MerklePath] if it is valid.
///
/// The `leaf_pos` refers to the global position of the leaf in the MMR, these are 0-indexed
/// values assigned in a strictly monotonic fashion as elements are inserted into the MMR,
/// this value corresponds to the values used in the MMR structure.
///
/// The `leaf` corresponds to the value at `leaf_pos`, and `path` is the authentication path for
/// that element up to its corresponding Mmr peak. The `leaf` is only used to compute the root
/// from the authentication path to valid the data, only the authentication data is saved in
/// the structure. If the value is required it should be stored out-of-band.
pub fn track(
&mut self,
leaf_pos: usize,
leaf: RpoDigest,
path: &MerklePath,
) -> Result<(), MmrError> {
// Checks there is a tree with same depth as the authentication path, if not the path is
// invalid.
let tree = 1 << path.depth();
if tree & self.forest == 0 {
return Err(MmrError::UnknownPeak(path.depth()));
};
if leaf_pos + 1 == self.forest
&& path.depth() == 0
&& self.peaks.last().is_some_and(|v| *v == leaf)
{
self.track_latest = true;
return Ok(());
}
// ignore the trees smaller than the target (these elements are position after the current
// target and don't affect the target leaf_pos)
let target_forest = self.forest ^ (self.forest & (tree - 1));
let peak_pos = (target_forest.count_ones() - 1) as usize;
// translate from mmr leaf_pos to merkle path
let path_idx = leaf_pos - (target_forest ^ tree);
// Compute the root of the authentication path, and check it matches the current version of
// the PartialMmr.
let computed = path
.compute_root(path_idx as u64, leaf)
.map_err(MmrError::MerkleRootComputationFailed)?;
if self.peaks[peak_pos] != computed {
return Err(MmrError::PeakPathMismatch);
}
let mut idx = InOrderIndex::from_leaf_pos(leaf_pos);
for leaf in path.nodes() {
self.nodes.insert(idx.sibling(), *leaf);
idx = idx.parent();
}
Ok(())
}
/// Removes a leaf of the [PartialMmr] and the unused nodes from the authentication path.
///
/// Note: `leaf_pos` corresponds to the position in the MMR and not on an individual tree.
pub fn untrack(&mut self, leaf_pos: usize) {
let mut idx = InOrderIndex::from_leaf_pos(leaf_pos);
self.nodes.remove(&idx.sibling());
// `idx` represent the element that can be computed by the authentication path, because
// these elements can be computed they are not saved for the authentication of the current
// target. In other words, if the idx is present it was added for the authentication of
// another element, and no more elements should be removed otherwise it would remove that
// element's authentication data.
while !self.nodes.contains_key(&idx) {
idx = idx.parent();
self.nodes.remove(&idx.sibling());
}
}
/// Applies updates to this [PartialMmr] and returns a vector of new authentication nodes
/// inserted into the partial MMR.
pub fn apply(&mut self, delta: MmrDelta) -> Result<Vec<(InOrderIndex, RpoDigest)>, MmrError> {
if delta.forest < self.forest {
return Err(MmrError::InvalidPeaks(format!(
"forest of mmr delta {} is less than current forest {}",
delta.forest, self.forest
)));
}
let mut inserted_nodes = Vec::new();
if delta.forest == self.forest {
if !delta.data.is_empty() {
return Err(MmrError::InvalidUpdate);
}
return Ok(inserted_nodes);
}
// find the tree merges
let changes = self.forest ^ delta.forest;
let largest = 1 << changes.ilog2();
let merges = self.forest & (largest - 1);
debug_assert!(
!self.track_latest || (merges & 1) == 1,
"if there is an odd element, a merge is required"
);
// count the number elements needed to produce largest from the current state
let (merge_count, new_peaks) = if merges != 0 {
let depth = largest.trailing_zeros();
let skipped = merges.trailing_zeros();
let computed = merges.count_ones() - 1;
let merge_count = depth - skipped - computed;
let new_peaks = delta.forest & (largest - 1);
(merge_count, new_peaks)
} else {
(0, changes)
};
// verify the delta size
if (delta.data.len() as u32) != merge_count + new_peaks.count_ones() {
return Err(MmrError::InvalidUpdate);
}
// keeps track of how many data elements from the update have been consumed
let mut update_count = 0;
if merges != 0 {
// starts at the smallest peak and follows the merged peaks
let mut peak_idx = forest_to_root_index(self.forest);
// match order of the update data while applying it
self.peaks.reverse();
// set to true when the data is needed for authentication paths updates
let mut track = self.track_latest;
self.track_latest = false;
let mut peak_count = 0;
let mut target = 1 << merges.trailing_zeros();
let mut new = delta.data[0];
update_count += 1;
while target < largest {
// check if either the left or right subtrees have saved for authentication paths.
// If so, turn tracking on to update those paths.
if target != 1 && !track {
track = self.is_tracked_node(&peak_idx);
}
// update data only contains the nodes from the right subtrees, left nodes are
// either previously known peaks or computed values
let (left, right) = if target & merges != 0 {
let peak = self.peaks[peak_count];
let sibling_idx = peak_idx.sibling();
// if the sibling peak is tracked, add this peaks to the set of
// authentication nodes
if self.is_tracked_node(&sibling_idx) {
self.nodes.insert(peak_idx, new);
inserted_nodes.push((peak_idx, new));
}
peak_count += 1;
(peak, new)
} else {
let update = delta.data[update_count];
update_count += 1;
(new, update)
};
if track {
let sibling_idx = peak_idx.sibling();
if peak_idx.is_left_child() {
self.nodes.insert(sibling_idx, right);
inserted_nodes.push((sibling_idx, right));
} else {
self.nodes.insert(sibling_idx, left);
inserted_nodes.push((sibling_idx, left));
}
}
peak_idx = peak_idx.parent();
new = Rpo256::merge(&[left, right]);
target <<= 1;
}
debug_assert!(peak_count == (merges.count_ones() as usize));
// restore the peaks order
self.peaks.reverse();
// remove the merged peaks
self.peaks.truncate(self.peaks.len() - peak_count);
// add the newly computed peak, the result of the merges
self.peaks.push(new);
}
// The rest of the update data is composed of peaks. None of these elements can contain
// tracked elements because the peaks were unknown, and it is not possible to add elements
// for tacking without authenticating it to a peak.
self.peaks.extend_from_slice(&delta.data[update_count..]);
self.forest = delta.forest;
debug_assert!(self.peaks.len() == (self.forest.count_ones() as usize));
Ok(inserted_nodes)
}
// HELPER METHODS
// --------------------------------------------------------------------------------------------
/// Returns true if this [PartialMmr] tracks authentication path for the node at the specified
/// index.
fn is_tracked_node(&self, node_index: &InOrderIndex) -> bool {
if node_index.is_leaf() {
self.nodes.contains_key(&node_index.sibling())
} else {
let left_child = node_index.left_child();
let right_child = node_index.right_child();
self.nodes.contains_key(&left_child) | self.nodes.contains_key(&right_child)
}
}
}
// CONVERSIONS
// ================================================================================================
impl From<MmrPeaks> for PartialMmr {
fn from(peaks: MmrPeaks) -> Self {
Self::from_peaks(peaks)
}
}
impl From<PartialMmr> for MmrPeaks {
fn from(partial_mmr: PartialMmr) -> Self {
// Safety: the [PartialMmr] maintains the constraints the number of true bits in the forest
// matches the number of peaks, as required by the [MmrPeaks]
MmrPeaks::new(partial_mmr.forest, partial_mmr.peaks).unwrap()
}
}
impl From<&MmrPeaks> for PartialMmr {
fn from(peaks: &MmrPeaks) -> Self {
Self::from_peaks(peaks.clone())
}
}
impl From<&PartialMmr> for MmrPeaks {
fn from(partial_mmr: &PartialMmr) -> Self {
// Safety: the [PartialMmr] maintains the constraints the number of true bits in the forest
// matches the number of peaks, as required by the [MmrPeaks]
MmrPeaks::new(partial_mmr.forest, partial_mmr.peaks.clone()).unwrap()
}
}
// ITERATORS
// ================================================================================================
/// An iterator over every inner node of the [PartialMmr].
pub struct InnerNodeIterator<'a, I: Iterator<Item = (usize, RpoDigest)>> {
nodes: &'a NodeMap,
leaves: I,
stack: Vec<(InOrderIndex, RpoDigest)>,
seen_nodes: BTreeSet<InOrderIndex>,
}
impl<I: Iterator<Item = (usize, RpoDigest)>> Iterator for InnerNodeIterator<'_, I> {
type Item = InnerNodeInfo;
fn next(&mut self) -> Option<Self::Item> {
while let Some((idx, node)) = self.stack.pop() {
let parent_idx = idx.parent();
let new_node = self.seen_nodes.insert(parent_idx);
// if we haven't seen this node's parent before, and the node has a sibling, return
// the inner node defined by the parent of this node, and move up the branch
if new_node {
if let Some(sibling) = self.nodes.get(&idx.sibling()) {
let (left, right) = if parent_idx.left_child() == idx {
(node, *sibling)
} else {
(*sibling, node)
};
let parent = Rpo256::merge(&[left, right]);
let inner_node = InnerNodeInfo { value: parent, left, right };
self.stack.push((parent_idx, parent));
return Some(inner_node);
}
}
// the previous leaf has been processed, try to process the next leaf
if let Some((pos, leaf)) = self.leaves.next() {
let idx = InOrderIndex::from_leaf_pos(pos);
self.stack.push((idx, leaf));
}
}
None
}
}
impl Serializable for PartialMmr {
fn write_into<W: winter_utils::ByteWriter>(&self, target: &mut W) {
self.forest.write_into(target);
self.peaks.write_into(target);
self.nodes.write_into(target);
target.write_bool(self.track_latest);
}
}
impl Deserializable for PartialMmr {
fn read_from<R: winter_utils::ByteReader>(
source: &mut R,
) -> Result<Self, winter_utils::DeserializationError> {
let forest = usize::read_from(source)?;
let peaks = Vec::<RpoDigest>::read_from(source)?;
let nodes = NodeMap::read_from(source)?;
let track_latest = source.read_bool()?;
Ok(Self { forest, peaks, nodes, track_latest })
}
}
// UTILS
// ================================================================================================
/// Given the description of a `forest`, returns the index of the root element of the smallest tree
/// in it.
fn forest_to_root_index(forest: usize) -> InOrderIndex {
// Count total size of all trees in the forest.
let nodes = nodes_in_forest(forest);
// Add the count for the parent nodes that separate each tree. These are allocated but
// currently empty, and correspond to the nodes that will be used once the trees are merged.
let open_trees = (forest.count_ones() - 1) as usize;
// Remove the count of the right subtree of the target tree, target tree root index comes
// before the subtree for the in-order tree walk.
let right_subtree_count = ((1u32 << forest.trailing_zeros()) - 1) as usize;
let idx = nodes + open_trees - right_subtree_count;
InOrderIndex::new(idx.try_into().unwrap())
}
/// Given the description of a `forest`, returns the index of the right most element.
fn forest_to_rightmost_index(forest: usize) -> InOrderIndex {
// Count total size of all trees in the forest.
let nodes = nodes_in_forest(forest);
// Add the count for the parent nodes that separate each tree. These are allocated but
// currently empty, and correspond to the nodes that will be used once the trees are merged.
let open_trees = (forest.count_ones() - 1) as usize;
let idx = nodes + open_trees;
InOrderIndex::new(idx.try_into().unwrap())
}
// TESTS
// ================================================================================================
#[cfg(test)]
mod tests {
use alloc::{collections::BTreeSet, vec::Vec};
use winter_utils::{Deserializable, Serializable};
use super::{
forest_to_rightmost_index, forest_to_root_index, InOrderIndex, MmrPeaks, PartialMmr,
RpoDigest,
};
use crate::merkle::{int_to_node, MerkleStore, Mmr, NodeIndex};
const LEAVES: [RpoDigest; 7] = [
int_to_node(0),
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
int_to_node(5),
int_to_node(6),
];
#[test]
fn test_forest_to_root_index() {
fn idx(pos: usize) -> InOrderIndex {
InOrderIndex::new(pos.try_into().unwrap())
}
// When there is a single tree in the forest, the index is equivalent to the number of
// leaves in that tree, which is `2^n`.
assert_eq!(forest_to_root_index(0b0001), idx(1));
assert_eq!(forest_to_root_index(0b0010), idx(2));
assert_eq!(forest_to_root_index(0b0100), idx(4));
assert_eq!(forest_to_root_index(0b1000), idx(8));
assert_eq!(forest_to_root_index(0b0011), idx(5));
assert_eq!(forest_to_root_index(0b0101), idx(9));
assert_eq!(forest_to_root_index(0b1001), idx(17));
assert_eq!(forest_to_root_index(0b0111), idx(13));
assert_eq!(forest_to_root_index(0b1011), idx(21));
assert_eq!(forest_to_root_index(0b1111), idx(29));
assert_eq!(forest_to_root_index(0b0110), idx(10));
assert_eq!(forest_to_root_index(0b1010), idx(18));
assert_eq!(forest_to_root_index(0b1100), idx(20));
assert_eq!(forest_to_root_index(0b1110), idx(26));
}
#[test]
fn test_forest_to_rightmost_index() {
fn idx(pos: usize) -> InOrderIndex {
InOrderIndex::new(pos.try_into().unwrap())
}
for forest in 1..256 {
assert!(forest_to_rightmost_index(forest).inner() % 2 == 1, "Leaves are always odd");
}
assert_eq!(forest_to_rightmost_index(0b0001), idx(1));
assert_eq!(forest_to_rightmost_index(0b0010), idx(3));
assert_eq!(forest_to_rightmost_index(0b0011), idx(5));
assert_eq!(forest_to_rightmost_index(0b0100), idx(7));
assert_eq!(forest_to_rightmost_index(0b0101), idx(9));
assert_eq!(forest_to_rightmost_index(0b0110), idx(11));
assert_eq!(forest_to_rightmost_index(0b0111), idx(13));
assert_eq!(forest_to_rightmost_index(0b1000), idx(15));
assert_eq!(forest_to_rightmost_index(0b1001), idx(17));
assert_eq!(forest_to_rightmost_index(0b1010), idx(19));
assert_eq!(forest_to_rightmost_index(0b1011), idx(21));
assert_eq!(forest_to_rightmost_index(0b1100), idx(23));
assert_eq!(forest_to_rightmost_index(0b1101), idx(25));
assert_eq!(forest_to_rightmost_index(0b1110), idx(27));
assert_eq!(forest_to_rightmost_index(0b1111), idx(29));
}
#[test]
fn test_partial_mmr_apply_delta() {
// build an MMR with 10 nodes (2 peaks) and a partial MMR based on it
let mut mmr = Mmr::default();
(0..10).for_each(|i| mmr.add(int_to_node(i)));
let mut partial_mmr: PartialMmr = mmr.peaks().into();
// add authentication path for position 1 and 8
{
let node = mmr.get(1).unwrap();
let proof = mmr.open(1).unwrap();
partial_mmr.track(1, node, &proof.merkle_path).unwrap();
}
{
let node = mmr.get(8).unwrap();
let proof = mmr.open(8).unwrap();
partial_mmr.track(8, node, &proof.merkle_path).unwrap();
}
// add 2 more nodes into the MMR and validate apply_delta()
(10..12).for_each(|i| mmr.add(int_to_node(i)));
validate_apply_delta(&mmr, &mut partial_mmr);
// add 1 more node to the MMR, validate apply_delta() and start tracking the node
mmr.add(int_to_node(12));
validate_apply_delta(&mmr, &mut partial_mmr);
{
let node = mmr.get(12).unwrap();
let proof = mmr.open(12).unwrap();
partial_mmr.track(12, node, &proof.merkle_path).unwrap();
assert!(partial_mmr.track_latest);
}
// by this point we are tracking authentication paths for positions: 1, 8, and 12
// add 3 more nodes to the MMR (collapses to 1 peak) and validate apply_delta()
(13..16).for_each(|i| mmr.add(int_to_node(i)));
validate_apply_delta(&mmr, &mut partial_mmr);
}
fn validate_apply_delta(mmr: &Mmr, partial: &mut PartialMmr) {
let tracked_leaves = partial
.nodes
.iter()
.filter_map(|(index, _)| if index.is_leaf() { Some(index.sibling()) } else { None })
.collect::<Vec<_>>();
let nodes_before = partial.nodes.clone();
// compute and apply delta
let delta = mmr.get_delta(partial.forest(), mmr.forest()).unwrap();
let nodes_delta = partial.apply(delta).unwrap();
// new peaks were computed correctly
assert_eq!(mmr.peaks(), partial.peaks());
let mut expected_nodes = nodes_before;
for (key, value) in nodes_delta {
// nodes should not be duplicated
assert!(expected_nodes.insert(key, value).is_none());
}
// new nodes should be a combination of original nodes and delta
assert_eq!(expected_nodes, partial.nodes);
// make sure tracked leaves open to the same proofs as in the underlying MMR
for index in tracked_leaves {
let index_value: u64 = index.into();
let pos = index_value / 2;
let proof1 = partial.open(pos as usize).unwrap().unwrap();
let proof2 = mmr.open(pos as usize).unwrap();
assert_eq!(proof1, proof2);
}
}
#[test]
fn test_partial_mmr_inner_nodes_iterator() {
// build the MMR
let mmr: Mmr = LEAVES.into();
let first_peak = mmr.peaks().peaks()[0];
// -- test single tree ----------------------------
// get path and node for position 1
let node1 = mmr.get(1).unwrap();
let proof1 = mmr.open(1).unwrap();
// create partial MMR and add authentication path to node at position 1
let mut partial_mmr: PartialMmr = mmr.peaks().into();
partial_mmr.track(1, node1, &proof1.merkle_path).unwrap();
// empty iterator should have no nodes
assert_eq!(partial_mmr.inner_nodes([].iter().cloned()).next(), None);
// build Merkle store from authentication paths in partial MMR
let mut store: MerkleStore = MerkleStore::new();
store.extend(partial_mmr.inner_nodes([(1, node1)].iter().cloned()));
let index1 = NodeIndex::new(2, 1).unwrap();
let path1 = store.get_path(first_peak, index1).unwrap().path;
assert_eq!(path1, proof1.merkle_path);
// -- test no duplicates --------------------------
// build the partial MMR
let mut partial_mmr: PartialMmr = mmr.peaks().into();
let node0 = mmr.get(0).unwrap();
let proof0 = mmr.open(0).unwrap();
let node2 = mmr.get(2).unwrap();
let proof2 = mmr.open(2).unwrap();
partial_mmr.track(0, node0, &proof0.merkle_path).unwrap();
partial_mmr.track(1, node1, &proof1.merkle_path).unwrap();
partial_mmr.track(2, node2, &proof2.merkle_path).unwrap();
// make sure there are no duplicates
let leaves = [(0, node0), (1, node1), (2, node2)];
let mut nodes = BTreeSet::new();
for node in partial_mmr.inner_nodes(leaves.iter().cloned()) {
assert!(nodes.insert(node.value));
}
// and also that the store is still be built correctly
store.extend(partial_mmr.inner_nodes(leaves.iter().cloned()));
let index0 = NodeIndex::new(2, 0).unwrap();
let index1 = NodeIndex::new(2, 1).unwrap();
let index2 = NodeIndex::new(2, 2).unwrap();
let path0 = store.get_path(first_peak, index0).unwrap().path;
let path1 = store.get_path(first_peak, index1).unwrap().path;
let path2 = store.get_path(first_peak, index2).unwrap().path;
assert_eq!(path0, proof0.merkle_path);
assert_eq!(path1, proof1.merkle_path);
assert_eq!(path2, proof2.merkle_path);
// -- test multiple trees -------------------------
// build the partial MMR
let mut partial_mmr: PartialMmr = mmr.peaks().into();
let node5 = mmr.get(5).unwrap();
let proof5 = mmr.open(5).unwrap();
partial_mmr.track(1, node1, &proof1.merkle_path).unwrap();
partial_mmr.track(5, node5, &proof5.merkle_path).unwrap();
// build Merkle store from authentication paths in partial MMR
let mut store: MerkleStore = MerkleStore::new();
store.extend(partial_mmr.inner_nodes([(1, node1), (5, node5)].iter().cloned()));
let index1 = NodeIndex::new(2, 1).unwrap();
let index5 = NodeIndex::new(1, 1).unwrap();
let second_peak = mmr.peaks().peaks()[1];
let path1 = store.get_path(first_peak, index1).unwrap().path;
let path5 = store.get_path(second_peak, index5).unwrap().path;
assert_eq!(path1, proof1.merkle_path);
assert_eq!(path5, proof5.merkle_path);
}
#[test]
fn test_partial_mmr_add_without_track() {
let mut mmr = Mmr::default();
let empty_peaks = MmrPeaks::new(0, vec![]).unwrap();
let mut partial_mmr = PartialMmr::from_peaks(empty_peaks);
for el in (0..256).map(int_to_node) {
mmr.add(el);
partial_mmr.add(el, false);
assert_eq!(mmr.peaks(), partial_mmr.peaks());
assert_eq!(mmr.forest(), partial_mmr.forest());
}
}
#[test]
fn test_partial_mmr_add_with_track() {
let mut mmr = Mmr::default();
let empty_peaks = MmrPeaks::new(0, vec![]).unwrap();
let mut partial_mmr = PartialMmr::from_peaks(empty_peaks);
for i in 0..256 {
let el = int_to_node(i);
mmr.add(el);
partial_mmr.add(el, true);
assert_eq!(mmr.peaks(), partial_mmr.peaks());
assert_eq!(mmr.forest(), partial_mmr.forest());
for pos in 0..i {
let mmr_proof = mmr.open(pos as usize).unwrap();
let partialmmr_proof = partial_mmr.open(pos as usize).unwrap().unwrap();
assert_eq!(mmr_proof, partialmmr_proof);
}
}
}
#[test]
fn test_partial_mmr_add_existing_track() {
let mut mmr = Mmr::from((0..7).map(int_to_node));
// derive a partial Mmr from it which tracks authentication path to leaf 5
let mut partial_mmr = PartialMmr::from_peaks(mmr.peaks());
let path_to_5 = mmr.open(5).unwrap().merkle_path;
let leaf_at_5 = mmr.get(5).unwrap();
partial_mmr.track(5, leaf_at_5, &path_to_5).unwrap();
// add a new leaf to both Mmr and partial Mmr
let leaf_at_7 = int_to_node(7);
mmr.add(leaf_at_7);
partial_mmr.add(leaf_at_7, false);
// the openings should be the same
assert_eq!(mmr.open(5).unwrap(), partial_mmr.open(5).unwrap().unwrap());
}
#[test]
fn test_partial_mmr_serialization() {
let mmr = Mmr::from((0..7).map(int_to_node));
let partial_mmr = PartialMmr::from_peaks(mmr.peaks());
let bytes = partial_mmr.to_bytes();
let decoded = PartialMmr::read_from_bytes(&bytes).unwrap();
assert_eq!(partial_mmr, decoded);
}
}