forked from GitGyun/visual_token_matching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
executable file
·287 lines (255 loc) · 15.8 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import argparse
import yaml
from easydict import EasyDict
def str2bool(v):
if v == 'True' or v == 'true':
return True
elif v == 'False' or v == 'false':
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
# argument parser
def parse_args(shell_script=None):
parser = argparse.ArgumentParser()
# necessary arguments
parser.add_argument('--debug_mode', '-debug', default=False, action='store_true')
parser.add_argument('--continue_mode', '-cont', default=False, action='store_true')
parser.add_argument('--skip_mode', '-skip', default=False, action='store_true')
parser.add_argument('--no_train', '-nt', default=False, action='store_true')
parser.add_argument('--no_eval', '-ne', default=False, action='store_true')
parser.add_argument('--no_save', '-ns', default=False, action='store_true')
parser.add_argument('--reset_mode', '-reset', default=False, action='store_true')
parser.add_argument('--profile_mode', '-prof', default=False, action='store_true')
parser.add_argument('--sanity_check', '-sc', default=False, action='store_true')
parser.add_argument('--resolution_finetune_mode', '-resft', default=False, action='store_true')
parser.add_argument('--quick_mode', '-quick', default=False, action='store_true')
parser.add_argument('--check_mode', '-check', default=False, action='store_true')
parser.add_argument('--large_mode', '-large', default=False, action='store_true')
parser.add_argument('--temporary_checkpointing', '-tc', default=False, action='store_true')
parser.add_argument('--development_mode', '-dev', default=False, action='store_true')
parser.add_argument('--benchmark_mode', '-bm', default=False, action='store_true')
parser.add_argument('--neurips2023_mode', '-nm', default=False, action='store_true')
parser.add_argument('--stage', type=int, default=0, choices=[0, 1, 2, 3])
parser.add_argument('--task', type=str, default='', choices=['', 'all', 'vos', 'mvos', 'ds', 'sod', 'semseg', 'animalkp', 'depth', 'flow'])
parser.add_argument('--task_fold', '-fold', type=int, default=None, choices=[0, 1, 2, 3, 4])
parser.add_argument('--rgb_tasks', '-rgb', type=str2bool, default=False)
parser.add_argument('--pose_tasks', '-pose', type=str2bool, default=False)
parser.add_argument('--exp_name', type=str, default='')
parser.add_argument('--exp_subname', type=str, default='')
parser.add_argument('--exp_subname_aux', '-aname', type=str, default='', help='Experiment subname for loading domain adaptation')
parser.add_argument('--name_postfix', '-ptf', type=str, default='')
parser.add_argument('--save_postfix', '-sptf', type=str, default='')
parser.add_argument('--result_postfix', '-rptf', type=str, default='')
# optional arguments
parser.add_argument('--model', type=str, default='VTM', choices=['VTM', 'DPT'])
parser.add_argument('--seed', type=int, default=None)
parser.add_argument('--strategy', '-str', type=str, default=None)
parser.add_argument('--dataset', type=str, default=None, choices=['unified', 'taskonomy', 'davis2016', 'davis2017', 'isic2018', 'duts', 'loveda', 'ap10k', 'eigen', 'kittiflow'])
parser.add_argument('--taskonomy', type=str2bool, default=None)
parser.add_argument('--coco', type=str2bool, default=None)
parser.add_argument('--midair', type=str2bool, default=None)
parser.add_argument('--openimages', type=str2bool, default=None)
parser.add_argument('--unlabeled', type=str2bool, default=None)
parser.add_argument('--coco_real', type=str2bool, default=None)
parser.add_argument('--midair_real', type=str2bool, default=None)
# parser.add_argument('--unlabeled_domains', type=str, nargs='+', default=None) # 'all' or some of ['ph2', 'animals10', 'potsdam']
parser.add_argument('--uniform_task_sampling', '-uts', type=str2bool, default=None)
parser.add_argument('--task_sampling_weight', '-tsw', type=float, nargs='+', default=None)
parser.add_argument('--uniform_dataset_sampling', '-uds', type=str2bool, default=None)
parser.add_argument('--base_task', type=str2bool, default=None)
parser.add_argument('--cont_task', type=str2bool, default=None)
parser.add_argument('--cat_task', type=str2bool, default=None)
parser.add_argument('--num_workers', '-nw', type=int, default=None)
parser.add_argument('--global_batch_size', '-gbs', type=int, default=None)
parser.add_argument('--eval_batch_size', '-ebs', type=int, default=None)
parser.add_argument('--n_eval_batches', '-neb', type=int, default=None)
parser.add_argument('--shot', type=int, default=None)
parser.add_argument('--max_channels', '-mc', type=int, default=None)
parser.add_argument('--support_idx', '-sid', type=int, default=None)
parser.add_argument('--channel_idx', '-cid', type=int, default=None)
parser.add_argument('--n_buildings', '-nb', type=int, default=None)
parser.add_argument('--use_valid', '-uv', type=str2bool, default=None)
parser.add_argument('--test_split', '-split', type=str, default=None)
parser.add_argument('--class_name', '-class', type=str, default=None)
parser.add_argument('--semseg_threshold', '-sth', type=float, default=None)
parser.add_argument('--dense_crf', '-dcrf', type=str2bool, default=None)
parser.add_argument('--image_augmentation', '-ia', type=str2bool, default=None)
parser.add_argument('--unary_augmentation', '-ua', type=str2bool, default=None)
parser.add_argument('--binary_augmentation', '-ba', type=str2bool, default=None)
parser.add_argument('--mixed_augmentation', '-ma', type=str2bool, default=None)
parser.add_argument('--trivial_augmentation', '-ta', type=str2bool, default=None)
parser.add_argument('--order_mixup', '-om', type=str2bool, default=None)
parser.add_argument('--image_encoder', '-ie', type=str, default='beit_base_patch16_224_in22k')
parser.add_argument('--label_encoder', '-le', type=str, default='vit_base_patch16_224')
parser.add_argument('--decoder_features', '-df', type=int, default=96)
parser.add_argument('--deconv_head', '-dh', type=str2bool, default='False')
parser.add_argument('--image_encoder_drop_path_rate', '-iedpr', type=float, default=None)
parser.add_argument('--label_encoder_drop_path_rate', '-ledpr', type=float, default=None)
parser.add_argument('--n_attn_heads', '-nah', type=int, default=12)
parser.add_argument('--bitfit', '-bf', type=str2bool, default='True')
parser.add_argument('--qkv_bitfit', '-qkvbf', type=str2bool, default=None)
parser.add_argument('--n_channel_interaction_blocks', '-ncib', type=int, default=None)
parser.add_argument('--channel_interaction_type', '-cit', type=str, default=None, choices=['global', 'axial', 'none'])
parser.add_argument('--post_channel_interaction', '-pci', type=str2bool, default=None)
parser.add_argument('--interaction_drop', '-id', type=int, default=None)
parser.add_argument('--head_tuning', '-ht', type=str2bool, default=None)
parser.add_argument('--knowledge_distill', '-kd', type=str2bool, default='False')
parser.add_argument('--distill_type', '-dt', type=str, default=None, choices=['attention_map', 'feature_map'])
parser.add_argument('--distill_weight', '-dw', type=float, default=None)
parser.add_argument('--n_pseudo_channels', '-npc', type=int, default=None)
parser.add_argument('--teacher_encoder', '-te', type=str, default=None)
parser.add_argument('--dpt_seg_bce', '-dsbce', type=str2bool, default=None)
parser.add_argument('--bitfit_init', '-bi', type=str, default=None, choices=['default', 'avg'])
parser.add_argument('--multimodal_softmax_loss', '-msl', type=str2bool, default=None)
parser.add_argument('--multimodal_mse_loss', '-mml', type=str2bool, default=None)
parser.add_argument('--temp_msl', '-tmsl', type=float, default=None)
parser.add_argument('--distill_start_block', '-dsb', type=int, default=None)
parser.add_argument('--n_levels', '-nl', type=int, default=4)
parser.add_argument('--dynamic_support', '-ds', type=str2bool, default=None)
parser.add_argument('--dynamic_support_interval', '-dsi', type=int, default=None)
parser.add_argument('--normalized_bce', '-nbce', type=str2bool, default=None, help='In finetune, normalize BCE loss by number of pixels')
parser.add_argument('--crop_not_resize', '-cnr', type=str2bool, default=None, help='Use crop from full resolution(LoveDA)')
parser.add_argument('--patches_per_img', type=int, default=None, help='Number of patches to choose from single image(LoveDA)')
parser.add_argument('--spatial_softmax_loss', '-ssl', type=str2bool, default=None, help='Use spatial softmax loss in finetune')
parser.add_argument('--mse_loss', '-mse', type=str2bool, default=None, help='Use mse loss in finetune')
parser.add_argument('--skip_crowd', type=str2bool, default=None, help='Skip images with multiple instances in ap10k finetune/test.')
parser.add_argument('--top_one', type=str2bool, default=None, help='Get the top one detection for ap10k; NOTE:THIS SHOULD BE MERGED TO SKIP_CROWD')
parser.add_argument('--multichannel', '-mch', type=str2bool, default=None, help='Use multichannel input for ap10k and loveda')
parser.add_argument('--channel_ce', '-cce', type=str2bool, default=None, help='Use channel-wise CE loss for ap10k and loveda')
parser.add_argument('--learning_to_bias', '-l2b', type=str2bool, default='False')
parser.add_argument('--n_bias_sets', '-nbs', type=int, default=None)
parser.add_argument('--average_real_bias_only', '-arbo', type=str2bool, default=None, help='Average biases from real tasks only during initialization of task-specific bias parameters.')
parser.add_argument('--l2b_pre_projection', '-l2bpp', type=str2bool, default='False', help='Projection before averaging ema features in L2B.')
parser.add_argument('--l2b_freeze_bias', '-l2bfb', type=str2bool, default=None, help='Freeze learned bias parameters and tune only the coefficients.')
parser.add_argument('--permute_classes', '-pcls', type=str2bool, default=None, help='Permute class indices for multi-class binning.')
parser.add_argument('--additional_bias', '-ab', type=str2bool, default=None, help='Additional Bias Term')
parser.add_argument('--n_steps', '-nst', type=int, default=None)
parser.add_argument('--n_schedule_steps', '-nscst', type=int, default=None)
parser.add_argument('--optimizer', '-opt', type=str, default=None, choices=['sgd', 'adam', 'adamw', 'cpuadam'])
parser.add_argument('--lr', type=float, default=None)
parser.add_argument('--lr_pretrained', '-lrp', type=float, default=None)
parser.add_argument('--lr_schedule', '-lrs', type=str, default=None, choices=['constant', 'sqroot', 'cos', 'poly'])
parser.add_argument('--schedule_from', '-scf', type=int, default=None)
parser.add_argument('--early_stopping_patience', '-esp', type=int, default=None)
parser.add_argument('--log_dir', type=str, default=None)
parser.add_argument('--save_dir', type=str, default=None)
parser.add_argument('--load_dir', type=str, default=None)
parser.add_argument('--val_iter', '-viter', type=int, default=None)
parser.add_argument('--save_iter', '-siter', type=int, default=None)
parser.add_argument('--load_step', '-ls', type=int, default=None)
parser.add_argument('--img_size', '-is', type=int, default=None, choices=[224, 384, 416, 512])
parser.add_argument('--run_config', '-cfg', type=str, default=None)
if shell_script is not None:
args = parser.parse_args(args=shell_script.split(' '))
else:
args = parser.parse_args()
# load config file
if args.stage == 0:
if args.resolution_finetune_mode:
config_path = 'configs/resolution_finetune_config.yaml'
else:
config_path = 'configs/train_config.yaml'
elif args.stage == 1:
config_path = 'configs/finetune_config.yaml'
elif args.stage == 2:
config_path = 'configs/test_config.yaml'
elif args.stage == 3:
config_path = 'configs/domain_adaptation_config.yaml'
args.no_eval = True
if args.run_config is not None:
config_path = args.run_config
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
config = EasyDict(config)
# copy parsed arguments
for key in args.__dir__():
if key[:2] != '__' and getattr(args, key) is not None:
setattr(config, key, getattr(args, key))
# retrieve data root
with open('data_paths.yaml', 'r') as f:
path_dict = yaml.safe_load(f)
config.path_dict = path_dict
### benchmark mode
if args.neurips2023_mode:
config.large_mode = True
config.knowledge_distill = True
config.learning_to_bias = True
config.l2b_pre_projection = True
config.name_postfix = '_neurips2023' + config.name_postfix
### develpment mode
if args.development_mode:
config.debug_mode = True
config.coco = False
config.midair = False
config.openimages = False
config.global_batch_size = 2
config.n_eval_batches = 1
config.cont_task = False
config.cat_task = False
# quick mode
if config.quick_mode:
config.global_batch_size = 4
config.n_steps = 100000
config.name_postfix = f'_QUICK{config.name_postfix}'
if config.benchmark_mode:
config.no_eval = True
config.n_steps = 100000
config.name_postfix = f'_BENCHMARK{config.name_postfix}'
if config.large_mode:
config.image_encoder = 'beitv2_large_patch16_224'
config.label_encoder = 'vit_large_patch16_224'
config.n_attn_heads = 16
config.decoder_features = 256
config.name_postfix = f'_LARGE{config.name_postfix}'
# for debugging
if config.debug_mode:
if config.profile_mode:
config.n_steps = 500
config.log_iter = 10
config.val_iter = 250
config.save_iter = 250
elif config.stage == 1:
config.n_steps = 10
config.log_iter = 1
config.val_iter = 5
config.save_iter = 5
else:
config.n_steps = 10
config.log_iter = 1
config.val_iter = 5
config.save_iter = 5
if config.stage == 2:
config.n_eval_batches = 2
config.log_dir += '_debugging'
if config.stage == 0 and not config.resolution_finetune_mode:
config.load_dir += '_debugging'
if config.stage != 2:
config.save_dir += '_debugging'
if config.exp_name == '':
if config.dataset == 'unified' or config.stage != 0: # MINOR UPDATE for finetuning
config.exp_name = f'{config.model}_unified{config.name_postfix}'
else:
if config.task == '':
config.exp_name = f'{config.model}_fold:{config.task_fold}{config.name_postfix}'
else:
config.exp_name = f'{config.model}_task:{config.task}{config.name_postfix}'
if config.stage == 0:
if config.n_schedule_steps < 0:
config.n_schedule_steps = config.n_steps
elif config.stage == 1:
tag = 'mtest_valid' if config.use_valid else 'mtest_support'
if config.dataset == 'taskonomy':
if config.task == 'segment_semantic':
config.monitor = f'{tag}/segment_semantic_{config.channel_idx}_pred'
else:
config.monitor = f'{tag}/{config.task}_pred'
elif config.dataset in ['davis2016', 'davis2017', 'loveda', 'ap10k']:
config.monitor = f'{tag}/{config.dataset}_{config.task}_{config.class_name}_pred'
elif config.dataset in ['isic2018', 'duts', 'kittiflow', 'rain100l', 'rain100h', 'eigen']:
config.monitor = f'{tag}/{config.dataset}_{config.task}_pred'
elif config.stage == 3:
config.monitor = ''
# Time attention
if config.time_attn < 2:
config.time_attn = 0
return config